Solve for x
x=\frac{\sqrt{10}}{2}+2\approx 3.58113883
x=-\frac{\sqrt{10}}{2}+2\approx 0.41886117
Graph
Share
Copied to clipboard
\left(2x-6\right)\left(x-1\right)=3
Use the distributive property to multiply 2 by x-3.
2x^{2}-8x+6=3
Use the distributive property to multiply 2x-6 by x-1 and combine like terms.
2x^{2}-8x+6-3=0
Subtract 3 from both sides.
2x^{2}-8x+3=0
Subtract 3 from 6 to get 3.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\times 3}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -8 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\times 3}}{2\times 2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\times 3}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-8\right)±\sqrt{64-24}}{2\times 2}
Multiply -8 times 3.
x=\frac{-\left(-8\right)±\sqrt{40}}{2\times 2}
Add 64 to -24.
x=\frac{-\left(-8\right)±2\sqrt{10}}{2\times 2}
Take the square root of 40.
x=\frac{8±2\sqrt{10}}{2\times 2}
The opposite of -8 is 8.
x=\frac{8±2\sqrt{10}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{10}+8}{4}
Now solve the equation x=\frac{8±2\sqrt{10}}{4} when ± is plus. Add 8 to 2\sqrt{10}.
x=\frac{\sqrt{10}}{2}+2
Divide 8+2\sqrt{10} by 4.
x=\frac{8-2\sqrt{10}}{4}
Now solve the equation x=\frac{8±2\sqrt{10}}{4} when ± is minus. Subtract 2\sqrt{10} from 8.
x=-\frac{\sqrt{10}}{2}+2
Divide 8-2\sqrt{10} by 4.
x=\frac{\sqrt{10}}{2}+2 x=-\frac{\sqrt{10}}{2}+2
The equation is now solved.
\left(2x-6\right)\left(x-1\right)=3
Use the distributive property to multiply 2 by x-3.
2x^{2}-8x+6=3
Use the distributive property to multiply 2x-6 by x-1 and combine like terms.
2x^{2}-8x=3-6
Subtract 6 from both sides.
2x^{2}-8x=-3
Subtract 6 from 3 to get -3.
\frac{2x^{2}-8x}{2}=-\frac{3}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{8}{2}\right)x=-\frac{3}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-4x=-\frac{3}{2}
Divide -8 by 2.
x^{2}-4x+\left(-2\right)^{2}=-\frac{3}{2}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-\frac{3}{2}+4
Square -2.
x^{2}-4x+4=\frac{5}{2}
Add -\frac{3}{2} to 4.
\left(x-2\right)^{2}=\frac{5}{2}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{5}{2}}
Take the square root of both sides of the equation.
x-2=\frac{\sqrt{10}}{2} x-2=-\frac{\sqrt{10}}{2}
Simplify.
x=\frac{\sqrt{10}}{2}+2 x=-\frac{\sqrt{10}}{2}+2
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}