Solve for t (complex solution)
t = \frac{\sqrt{37} + 1}{6} \approx 1.180460422
t=\frac{1-\sqrt{37}}{6}\approx -0.847127088
Solve for t
t = \frac{\sqrt{37} + 1}{6} \approx 1.180460422
Share
Copied to clipboard
\left(2t+2\sqrt{t}\right)\left(t-\sqrt{t}\right)+\left(t-2\right)^{2}=7-5t
Use the distributive property to multiply 2 by t+\sqrt{t}.
2t^{2}-2\left(\sqrt{t}\right)^{2}+\left(t-2\right)^{2}=7-5t
Use the distributive property to multiply 2t+2\sqrt{t} by t-\sqrt{t} and combine like terms.
2t^{2}-2t+\left(t-2\right)^{2}=7-5t
Calculate \sqrt{t} to the power of 2 and get t.
2t^{2}-2t+t^{2}-4t+4=7-5t
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-2\right)^{2}.
3t^{2}-2t-4t+4=7-5t
Combine 2t^{2} and t^{2} to get 3t^{2}.
3t^{2}-6t+4=7-5t
Combine -2t and -4t to get -6t.
3t^{2}-6t+4-7=-5t
Subtract 7 from both sides.
3t^{2}-6t-3=-5t
Subtract 7 from 4 to get -3.
3t^{2}-6t-3+5t=0
Add 5t to both sides.
3t^{2}-t-3=0
Combine -6t and 5t to get -t.
t=\frac{-\left(-1\right)±\sqrt{1-4\times 3\left(-3\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -1 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-1\right)±\sqrt{1-12\left(-3\right)}}{2\times 3}
Multiply -4 times 3.
t=\frac{-\left(-1\right)±\sqrt{1+36}}{2\times 3}
Multiply -12 times -3.
t=\frac{-\left(-1\right)±\sqrt{37}}{2\times 3}
Add 1 to 36.
t=\frac{1±\sqrt{37}}{2\times 3}
The opposite of -1 is 1.
t=\frac{1±\sqrt{37}}{6}
Multiply 2 times 3.
t=\frac{\sqrt{37}+1}{6}
Now solve the equation t=\frac{1±\sqrt{37}}{6} when ± is plus. Add 1 to \sqrt{37}.
t=\frac{1-\sqrt{37}}{6}
Now solve the equation t=\frac{1±\sqrt{37}}{6} when ± is minus. Subtract \sqrt{37} from 1.
t=\frac{\sqrt{37}+1}{6} t=\frac{1-\sqrt{37}}{6}
The equation is now solved.
\left(2t+2\sqrt{t}\right)\left(t-\sqrt{t}\right)+\left(t-2\right)^{2}=7-5t
Use the distributive property to multiply 2 by t+\sqrt{t}.
2t^{2}-2\left(\sqrt{t}\right)^{2}+\left(t-2\right)^{2}=7-5t
Use the distributive property to multiply 2t+2\sqrt{t} by t-\sqrt{t} and combine like terms.
2t^{2}-2t+\left(t-2\right)^{2}=7-5t
Calculate \sqrt{t} to the power of 2 and get t.
2t^{2}-2t+t^{2}-4t+4=7-5t
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-2\right)^{2}.
3t^{2}-2t-4t+4=7-5t
Combine 2t^{2} and t^{2} to get 3t^{2}.
3t^{2}-6t+4=7-5t
Combine -2t and -4t to get -6t.
3t^{2}-6t+4+5t=7
Add 5t to both sides.
3t^{2}-t+4=7
Combine -6t and 5t to get -t.
3t^{2}-t=7-4
Subtract 4 from both sides.
3t^{2}-t=3
Subtract 4 from 7 to get 3.
\frac{3t^{2}-t}{3}=\frac{3}{3}
Divide both sides by 3.
t^{2}-\frac{1}{3}t=\frac{3}{3}
Dividing by 3 undoes the multiplication by 3.
t^{2}-\frac{1}{3}t=1
Divide 3 by 3.
t^{2}-\frac{1}{3}t+\left(-\frac{1}{6}\right)^{2}=1+\left(-\frac{1}{6}\right)^{2}
Divide -\frac{1}{3}, the coefficient of the x term, by 2 to get -\frac{1}{6}. Then add the square of -\frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{1}{3}t+\frac{1}{36}=1+\frac{1}{36}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{1}{3}t+\frac{1}{36}=\frac{37}{36}
Add 1 to \frac{1}{36}.
\left(t-\frac{1}{6}\right)^{2}=\frac{37}{36}
Factor t^{2}-\frac{1}{3}t+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{1}{6}\right)^{2}}=\sqrt{\frac{37}{36}}
Take the square root of both sides of the equation.
t-\frac{1}{6}=\frac{\sqrt{37}}{6} t-\frac{1}{6}=-\frac{\sqrt{37}}{6}
Simplify.
t=\frac{\sqrt{37}+1}{6} t=\frac{1-\sqrt{37}}{6}
Add \frac{1}{6} to both sides of the equation.
\left(2t+2\sqrt{t}\right)\left(t-\sqrt{t}\right)+\left(t-2\right)^{2}=7-5t
Use the distributive property to multiply 2 by t+\sqrt{t}.
2t^{2}-2\left(\sqrt{t}\right)^{2}+\left(t-2\right)^{2}=7-5t
Use the distributive property to multiply 2t+2\sqrt{t} by t-\sqrt{t} and combine like terms.
2t^{2}-2t+\left(t-2\right)^{2}=7-5t
Calculate \sqrt{t} to the power of 2 and get t.
2t^{2}-2t+t^{2}-4t+4=7-5t
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-2\right)^{2}.
3t^{2}-2t-4t+4=7-5t
Combine 2t^{2} and t^{2} to get 3t^{2}.
3t^{2}-6t+4=7-5t
Combine -2t and -4t to get -6t.
3t^{2}-6t+4-7=-5t
Subtract 7 from both sides.
3t^{2}-6t-3=-5t
Subtract 7 from 4 to get -3.
3t^{2}-6t-3+5t=0
Add 5t to both sides.
3t^{2}-t-3=0
Combine -6t and 5t to get -t.
t=\frac{-\left(-1\right)±\sqrt{1-4\times 3\left(-3\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -1 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-1\right)±\sqrt{1-12\left(-3\right)}}{2\times 3}
Multiply -4 times 3.
t=\frac{-\left(-1\right)±\sqrt{1+36}}{2\times 3}
Multiply -12 times -3.
t=\frac{-\left(-1\right)±\sqrt{37}}{2\times 3}
Add 1 to 36.
t=\frac{1±\sqrt{37}}{2\times 3}
The opposite of -1 is 1.
t=\frac{1±\sqrt{37}}{6}
Multiply 2 times 3.
t=\frac{\sqrt{37}+1}{6}
Now solve the equation t=\frac{1±\sqrt{37}}{6} when ± is plus. Add 1 to \sqrt{37}.
t=\frac{1-\sqrt{37}}{6}
Now solve the equation t=\frac{1±\sqrt{37}}{6} when ± is minus. Subtract \sqrt{37} from 1.
t=\frac{\sqrt{37}+1}{6} t=\frac{1-\sqrt{37}}{6}
The equation is now solved.
\left(2t+2\sqrt{t}\right)\left(t-\sqrt{t}\right)+\left(t-2\right)^{2}=7-5t
Use the distributive property to multiply 2 by t+\sqrt{t}.
2t^{2}-2\left(\sqrt{t}\right)^{2}+\left(t-2\right)^{2}=7-5t
Use the distributive property to multiply 2t+2\sqrt{t} by t-\sqrt{t} and combine like terms.
2t^{2}-2t+\left(t-2\right)^{2}=7-5t
Calculate \sqrt{t} to the power of 2 and get t.
2t^{2}-2t+t^{2}-4t+4=7-5t
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-2\right)^{2}.
3t^{2}-2t-4t+4=7-5t
Combine 2t^{2} and t^{2} to get 3t^{2}.
3t^{2}-6t+4=7-5t
Combine -2t and -4t to get -6t.
3t^{2}-6t+4+5t=7
Add 5t to both sides.
3t^{2}-t+4=7
Combine -6t and 5t to get -t.
3t^{2}-t=7-4
Subtract 4 from both sides.
3t^{2}-t=3
Subtract 4 from 7 to get 3.
\frac{3t^{2}-t}{3}=\frac{3}{3}
Divide both sides by 3.
t^{2}-\frac{1}{3}t=\frac{3}{3}
Dividing by 3 undoes the multiplication by 3.
t^{2}-\frac{1}{3}t=1
Divide 3 by 3.
t^{2}-\frac{1}{3}t+\left(-\frac{1}{6}\right)^{2}=1+\left(-\frac{1}{6}\right)^{2}
Divide -\frac{1}{3}, the coefficient of the x term, by 2 to get -\frac{1}{6}. Then add the square of -\frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{1}{3}t+\frac{1}{36}=1+\frac{1}{36}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{1}{3}t+\frac{1}{36}=\frac{37}{36}
Add 1 to \frac{1}{36}.
\left(t-\frac{1}{6}\right)^{2}=\frac{37}{36}
Factor t^{2}-\frac{1}{3}t+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{1}{6}\right)^{2}}=\sqrt{\frac{37}{36}}
Take the square root of both sides of the equation.
t-\frac{1}{6}=\frac{\sqrt{37}}{6} t-\frac{1}{6}=-\frac{\sqrt{37}}{6}
Simplify.
t=\frac{\sqrt{37}+1}{6} t=\frac{1-\sqrt{37}}{6}
Add \frac{1}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}