Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(6x-4\right)\left(4x+3\right)=\left(2x+1\right)\left(6x-5\right)+9
Use the distributive property to multiply 2 by 3x-2.
24x^{2}+2x-12=\left(2x+1\right)\left(6x-5\right)+9
Use the distributive property to multiply 6x-4 by 4x+3 and combine like terms.
24x^{2}+2x-12=12x^{2}-4x-5+9
Use the distributive property to multiply 2x+1 by 6x-5 and combine like terms.
24x^{2}+2x-12=12x^{2}-4x+4
Add -5 and 9 to get 4.
24x^{2}+2x-12-12x^{2}=-4x+4
Subtract 12x^{2} from both sides.
12x^{2}+2x-12=-4x+4
Combine 24x^{2} and -12x^{2} to get 12x^{2}.
12x^{2}+2x-12+4x=4
Add 4x to both sides.
12x^{2}+6x-12=4
Combine 2x and 4x to get 6x.
12x^{2}+6x-12-4=0
Subtract 4 from both sides.
12x^{2}+6x-16=0
Subtract 4 from -12 to get -16.
x=\frac{-6±\sqrt{6^{2}-4\times 12\left(-16\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 6 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 12\left(-16\right)}}{2\times 12}
Square 6.
x=\frac{-6±\sqrt{36-48\left(-16\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{-6±\sqrt{36+768}}{2\times 12}
Multiply -48 times -16.
x=\frac{-6±\sqrt{804}}{2\times 12}
Add 36 to 768.
x=\frac{-6±2\sqrt{201}}{2\times 12}
Take the square root of 804.
x=\frac{-6±2\sqrt{201}}{24}
Multiply 2 times 12.
x=\frac{2\sqrt{201}-6}{24}
Now solve the equation x=\frac{-6±2\sqrt{201}}{24} when ± is plus. Add -6 to 2\sqrt{201}.
x=\frac{\sqrt{201}}{12}-\frac{1}{4}
Divide -6+2\sqrt{201} by 24.
x=\frac{-2\sqrt{201}-6}{24}
Now solve the equation x=\frac{-6±2\sqrt{201}}{24} when ± is minus. Subtract 2\sqrt{201} from -6.
x=-\frac{\sqrt{201}}{12}-\frac{1}{4}
Divide -6-2\sqrt{201} by 24.
x=\frac{\sqrt{201}}{12}-\frac{1}{4} x=-\frac{\sqrt{201}}{12}-\frac{1}{4}
The equation is now solved.
\left(6x-4\right)\left(4x+3\right)=\left(2x+1\right)\left(6x-5\right)+9
Use the distributive property to multiply 2 by 3x-2.
24x^{2}+2x-12=\left(2x+1\right)\left(6x-5\right)+9
Use the distributive property to multiply 6x-4 by 4x+3 and combine like terms.
24x^{2}+2x-12=12x^{2}-4x-5+9
Use the distributive property to multiply 2x+1 by 6x-5 and combine like terms.
24x^{2}+2x-12=12x^{2}-4x+4
Add -5 and 9 to get 4.
24x^{2}+2x-12-12x^{2}=-4x+4
Subtract 12x^{2} from both sides.
12x^{2}+2x-12=-4x+4
Combine 24x^{2} and -12x^{2} to get 12x^{2}.
12x^{2}+2x-12+4x=4
Add 4x to both sides.
12x^{2}+6x-12=4
Combine 2x and 4x to get 6x.
12x^{2}+6x=4+12
Add 12 to both sides.
12x^{2}+6x=16
Add 4 and 12 to get 16.
\frac{12x^{2}+6x}{12}=\frac{16}{12}
Divide both sides by 12.
x^{2}+\frac{6}{12}x=\frac{16}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}+\frac{1}{2}x=\frac{16}{12}
Reduce the fraction \frac{6}{12} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{1}{2}x=\frac{4}{3}
Reduce the fraction \frac{16}{12} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{4}{3}+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{4}{3}+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{67}{48}
Add \frac{4}{3} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{4}\right)^{2}=\frac{67}{48}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{67}{48}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{\sqrt{201}}{12} x+\frac{1}{4}=-\frac{\sqrt{201}}{12}
Simplify.
x=\frac{\sqrt{201}}{12}-\frac{1}{4} x=-\frac{\sqrt{201}}{12}-\frac{1}{4}
Subtract \frac{1}{4} from both sides of the equation.