Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\times 4\sqrt{3}}{2\sqrt{3}-\frac{1}{3}\sqrt{27}}-\left(\sqrt{3}-1\right)^{2}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{8\sqrt{3}}{2\sqrt{3}-\frac{1}{3}\sqrt{27}}-\left(\sqrt{3}-1\right)^{2}
Multiply 2 and 4 to get 8.
\frac{8\sqrt{3}}{2\sqrt{3}-\frac{1}{3}\times 3\sqrt{3}}-\left(\sqrt{3}-1\right)^{2}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{8\sqrt{3}}{2\sqrt{3}-\sqrt{3}}-\left(\sqrt{3}-1\right)^{2}
Multiply -\frac{1}{3} and 3 to get -1.
\frac{8\sqrt{3}}{\sqrt{3}}-\left(\sqrt{3}-1\right)^{2}
Combine 2\sqrt{3} and -\sqrt{3} to get \sqrt{3}.
\frac{8\sqrt{3}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\left(\sqrt{3}-1\right)^{2}
Rationalize the denominator of \frac{8\sqrt{3}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{8\sqrt{3}\sqrt{3}}{3}-\left(\sqrt{3}-1\right)^{2}
The square of \sqrt{3} is 3.
\frac{8\times 3}{3}-\left(\sqrt{3}-1\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{24}{3}-\left(\sqrt{3}-1\right)^{2}
Multiply 8 and 3 to get 24.
8-\left(\sqrt{3}-1\right)^{2}
Divide 24 by 3 to get 8.
8-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
8-\left(3-2\sqrt{3}+1\right)
The square of \sqrt{3} is 3.
8-\left(4-2\sqrt{3}\right)
Add 3 and 1 to get 4.
8-4+2\sqrt{3}
To find the opposite of 4-2\sqrt{3}, find the opposite of each term.
4+2\sqrt{3}
Subtract 4 from 8 to get 4.