Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\sqrt{3}-2\sqrt{3}\sqrt{15}-3\sqrt{\frac{1}{5}}
Use the distributive property to multiply 2\sqrt{3} by 1-\sqrt{15}.
2\sqrt{3}-2\sqrt{3}\sqrt{3}\sqrt{5}-3\sqrt{\frac{1}{5}}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
2\sqrt{3}-2\times 3\sqrt{5}-3\sqrt{\frac{1}{5}}
Multiply \sqrt{3} and \sqrt{3} to get 3.
2\sqrt{3}-6\sqrt{5}-3\sqrt{\frac{1}{5}}
Multiply -2 and 3 to get -6.
2\sqrt{3}-6\sqrt{5}-3\times \frac{\sqrt{1}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{1}{5}} as the division of square roots \frac{\sqrt{1}}{\sqrt{5}}.
2\sqrt{3}-6\sqrt{5}-3\times \frac{1}{\sqrt{5}}
Calculate the square root of 1 and get 1.
2\sqrt{3}-6\sqrt{5}-3\times \frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
2\sqrt{3}-6\sqrt{5}-3\times \frac{\sqrt{5}}{5}
The square of \sqrt{5} is 5.
2\sqrt{3}-6\sqrt{5}+\frac{-3\sqrt{5}}{5}
Express -3\times \frac{\sqrt{5}}{5} as a single fraction.
\frac{5\left(2\sqrt{3}-6\sqrt{5}\right)}{5}+\frac{-3\sqrt{5}}{5}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2\sqrt{3}-6\sqrt{5} times \frac{5}{5}.
\frac{5\left(2\sqrt{3}-6\sqrt{5}\right)-3\sqrt{5}}{5}
Since \frac{5\left(2\sqrt{3}-6\sqrt{5}\right)}{5} and \frac{-3\sqrt{5}}{5} have the same denominator, add them by adding their numerators.
\frac{10\sqrt{3}-30\sqrt{5}-3\sqrt{5}}{5}
Do the multiplications in 5\left(2\sqrt{3}-6\sqrt{5}\right)-3\sqrt{5}.
\frac{10\sqrt{3}-33\sqrt{5}}{5}
Do the calculations in 10\sqrt{3}-30\sqrt{5}-3\sqrt{5}.