Evaluate
-\frac{2\left(x-4\right)}{x\left(x+4\right)}
Expand
-\frac{2\left(x-4\right)}{x\left(x+4\right)}
Graph
Share
Copied to clipboard
\frac{\frac{2\left(x^{2}-8x+16\right)}{x^{2}+2x}}{\frac{12}{x+2}-x+2}
Express 2\times \frac{x^{2}-8x+16}{x^{2}+2x} as a single fraction.
\frac{\frac{2\left(x^{2}-8x+16\right)}{x^{2}+2x}}{\frac{12}{x+2}+\frac{\left(-x+2\right)\left(x+2\right)}{x+2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x+2 times \frac{x+2}{x+2}.
\frac{\frac{2\left(x^{2}-8x+16\right)}{x^{2}+2x}}{\frac{12+\left(-x+2\right)\left(x+2\right)}{x+2}}
Since \frac{12}{x+2} and \frac{\left(-x+2\right)\left(x+2\right)}{x+2} have the same denominator, add them by adding their numerators.
\frac{\frac{2\left(x^{2}-8x+16\right)}{x^{2}+2x}}{\frac{12-x^{2}-2x+2x+4}{x+2}}
Do the multiplications in 12+\left(-x+2\right)\left(x+2\right).
\frac{\frac{2\left(x^{2}-8x+16\right)}{x^{2}+2x}}{\frac{16-x^{2}}{x+2}}
Combine like terms in 12-x^{2}-2x+2x+4.
\frac{2\left(x^{2}-8x+16\right)\left(x+2\right)}{\left(x^{2}+2x\right)\left(16-x^{2}\right)}
Divide \frac{2\left(x^{2}-8x+16\right)}{x^{2}+2x} by \frac{16-x^{2}}{x+2} by multiplying \frac{2\left(x^{2}-8x+16\right)}{x^{2}+2x} by the reciprocal of \frac{16-x^{2}}{x+2}.
\frac{2\left(x+2\right)\left(x-4\right)^{2}}{x\left(x-4\right)\left(-x-4\right)\left(x+2\right)}
Factor the expressions that are not already factored.
\frac{2\left(x-4\right)}{x\left(-x-4\right)}
Cancel out \left(x-4\right)\left(x+2\right) in both numerator and denominator.
\frac{2x-8}{-x^{2}-4x}
Expand the expression.
\frac{\frac{2\left(x^{2}-8x+16\right)}{x^{2}+2x}}{\frac{12}{x+2}-x+2}
Express 2\times \frac{x^{2}-8x+16}{x^{2}+2x} as a single fraction.
\frac{\frac{2\left(x^{2}-8x+16\right)}{x^{2}+2x}}{\frac{12}{x+2}+\frac{\left(-x+2\right)\left(x+2\right)}{x+2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x+2 times \frac{x+2}{x+2}.
\frac{\frac{2\left(x^{2}-8x+16\right)}{x^{2}+2x}}{\frac{12+\left(-x+2\right)\left(x+2\right)}{x+2}}
Since \frac{12}{x+2} and \frac{\left(-x+2\right)\left(x+2\right)}{x+2} have the same denominator, add them by adding their numerators.
\frac{\frac{2\left(x^{2}-8x+16\right)}{x^{2}+2x}}{\frac{12-x^{2}-2x+2x+4}{x+2}}
Do the multiplications in 12+\left(-x+2\right)\left(x+2\right).
\frac{\frac{2\left(x^{2}-8x+16\right)}{x^{2}+2x}}{\frac{16-x^{2}}{x+2}}
Combine like terms in 12-x^{2}-2x+2x+4.
\frac{2\left(x^{2}-8x+16\right)\left(x+2\right)}{\left(x^{2}+2x\right)\left(16-x^{2}\right)}
Divide \frac{2\left(x^{2}-8x+16\right)}{x^{2}+2x} by \frac{16-x^{2}}{x+2} by multiplying \frac{2\left(x^{2}-8x+16\right)}{x^{2}+2x} by the reciprocal of \frac{16-x^{2}}{x+2}.
\frac{2\left(x+2\right)\left(x-4\right)^{2}}{x\left(x-4\right)\left(-x-4\right)\left(x+2\right)}
Factor the expressions that are not already factored.
\frac{2\left(x-4\right)}{x\left(-x-4\right)}
Cancel out \left(x-4\right)\left(x+2\right) in both numerator and denominator.
\frac{2x-8}{-x^{2}-4x}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}