Evaluate
\frac{2\times \left(\frac{a}{b}\right)^{3}}{3}
Expand
\frac{2\times \left(\frac{a}{b}\right)^{3}}{3}
Share
Copied to clipboard
\frac{2\times \frac{-3a}{b}\times \frac{a}{-a^{3}}}{\left(-\frac{3b}{a^{2}}\right)^{2}}
Cancel out b^{2} in both numerator and denominator.
\frac{\frac{2\left(-3\right)a}{b}\times \frac{a}{-a^{3}}}{\left(-\frac{3b}{a^{2}}\right)^{2}}
Express 2\times \frac{-3a}{b} as a single fraction.
\frac{\frac{2\left(-3\right)aa}{b\left(-a^{3}\right)}}{\left(-\frac{3b}{a^{2}}\right)^{2}}
Multiply \frac{2\left(-3\right)a}{b} times \frac{a}{-a^{3}} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{2\left(-3\right)aa}{b\left(-a^{3}\right)}}{\left(\frac{3b}{a^{2}}\right)^{2}}
Calculate -\frac{3b}{a^{2}} to the power of 2 and get \left(\frac{3b}{a^{2}}\right)^{2}.
\frac{\frac{2\left(-3\right)a^{2}}{b\left(-a^{3}\right)}}{\left(\frac{3b}{a^{2}}\right)^{2}}
Multiply a and a to get a^{2}.
\frac{\frac{-6a^{2}}{b\left(-a^{3}\right)}}{\left(\frac{3b}{a^{2}}\right)^{2}}
Multiply 2 and -3 to get -6.
\frac{\frac{-6a^{2}}{-ba^{3}}}{\left(\frac{3b}{a^{2}}\right)^{2}}
Factor the expressions that are not already factored in \frac{-6a^{2}}{b\left(-a^{3}\right)}.
\frac{\frac{-6}{-ab}}{\left(\frac{3b}{a^{2}}\right)^{2}}
Cancel out a^{2} in both numerator and denominator.
\frac{\frac{-6}{-ab}}{\frac{\left(3b\right)^{2}}{\left(a^{2}\right)^{2}}}
To raise \frac{3b}{a^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{-6\left(a^{2}\right)^{2}}{-ab\times \left(3b\right)^{2}}
Divide \frac{-6}{-ab} by \frac{\left(3b\right)^{2}}{\left(a^{2}\right)^{2}} by multiplying \frac{-6}{-ab} by the reciprocal of \frac{\left(3b\right)^{2}}{\left(a^{2}\right)^{2}}.
\frac{6\left(a^{2}\right)^{2}}{ab\times \left(3b\right)^{2}}
Cancel out -1 in both numerator and denominator.
\frac{6a^{4}}{ab\times \left(3b\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{6a^{3}}{b\times \left(3b\right)^{2}}
Cancel out a in both numerator and denominator.
\frac{6a^{3}}{b\times 3^{2}b^{2}}
Expand \left(3b\right)^{2}.
\frac{6a^{3}}{b\times 9b^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{6a^{3}}{b^{3}\times 9}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{2a^{3}}{3b^{3}}
Cancel out 3 in both numerator and denominator.
\frac{2\times \frac{-3a}{b}\times \frac{a}{-a^{3}}}{\left(-\frac{3b}{a^{2}}\right)^{2}}
Cancel out b^{2} in both numerator and denominator.
\frac{\frac{2\left(-3\right)a}{b}\times \frac{a}{-a^{3}}}{\left(-\frac{3b}{a^{2}}\right)^{2}}
Express 2\times \frac{-3a}{b} as a single fraction.
\frac{\frac{2\left(-3\right)aa}{b\left(-a^{3}\right)}}{\left(-\frac{3b}{a^{2}}\right)^{2}}
Multiply \frac{2\left(-3\right)a}{b} times \frac{a}{-a^{3}} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{2\left(-3\right)aa}{b\left(-a^{3}\right)}}{\left(\frac{3b}{a^{2}}\right)^{2}}
Calculate -\frac{3b}{a^{2}} to the power of 2 and get \left(\frac{3b}{a^{2}}\right)^{2}.
\frac{\frac{2\left(-3\right)a^{2}}{b\left(-a^{3}\right)}}{\left(\frac{3b}{a^{2}}\right)^{2}}
Multiply a and a to get a^{2}.
\frac{\frac{-6a^{2}}{b\left(-a^{3}\right)}}{\left(\frac{3b}{a^{2}}\right)^{2}}
Multiply 2 and -3 to get -6.
\frac{\frac{-6a^{2}}{-ba^{3}}}{\left(\frac{3b}{a^{2}}\right)^{2}}
Factor the expressions that are not already factored in \frac{-6a^{2}}{b\left(-a^{3}\right)}.
\frac{\frac{-6}{-ab}}{\left(\frac{3b}{a^{2}}\right)^{2}}
Cancel out a^{2} in both numerator and denominator.
\frac{\frac{-6}{-ab}}{\frac{\left(3b\right)^{2}}{\left(a^{2}\right)^{2}}}
To raise \frac{3b}{a^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{-6\left(a^{2}\right)^{2}}{-ab\times \left(3b\right)^{2}}
Divide \frac{-6}{-ab} by \frac{\left(3b\right)^{2}}{\left(a^{2}\right)^{2}} by multiplying \frac{-6}{-ab} by the reciprocal of \frac{\left(3b\right)^{2}}{\left(a^{2}\right)^{2}}.
\frac{6\left(a^{2}\right)^{2}}{ab\times \left(3b\right)^{2}}
Cancel out -1 in both numerator and denominator.
\frac{6a^{4}}{ab\times \left(3b\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{6a^{3}}{b\times \left(3b\right)^{2}}
Cancel out a in both numerator and denominator.
\frac{6a^{3}}{b\times 3^{2}b^{2}}
Expand \left(3b\right)^{2}.
\frac{6a^{3}}{b\times 9b^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{6a^{3}}{b^{3}\times 9}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{2a^{3}}{3b^{3}}
Cancel out 3 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}