Evaluate
-8\sqrt{6}-2\approx -21.595917942
Share
Copied to clipboard
2\times \frac{\sqrt{2}}{2}\left(2\times 2\sqrt{3}+4\sqrt{\frac{1}{8}}-3\sqrt{48}\right)-4
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
2\times \frac{\sqrt{2}}{2}\left(4\sqrt{3}+4\sqrt{\frac{1}{8}}-3\sqrt{48}\right)-4
Multiply 2 and 2 to get 4.
2\times \frac{\sqrt{2}}{2}\left(4\sqrt{3}+4\times \frac{\sqrt{1}}{\sqrt{8}}-3\sqrt{48}\right)-4
Rewrite the square root of the division \sqrt{\frac{1}{8}} as the division of square roots \frac{\sqrt{1}}{\sqrt{8}}.
2\times \frac{\sqrt{2}}{2}\left(4\sqrt{3}+4\times \frac{1}{\sqrt{8}}-3\sqrt{48}\right)-4
Calculate the square root of 1 and get 1.
2\times \frac{\sqrt{2}}{2}\left(4\sqrt{3}+4\times \frac{1}{2\sqrt{2}}-3\sqrt{48}\right)-4
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
2\times \frac{\sqrt{2}}{2}\left(4\sqrt{3}+4\times \frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}-3\sqrt{48}\right)-4
Rationalize the denominator of \frac{1}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
2\times \frac{\sqrt{2}}{2}\left(4\sqrt{3}+4\times \frac{\sqrt{2}}{2\times 2}-3\sqrt{48}\right)-4
The square of \sqrt{2} is 2.
2\times \frac{\sqrt{2}}{2}\left(4\sqrt{3}+4\times \frac{\sqrt{2}}{4}-3\sqrt{48}\right)-4
Multiply 2 and 2 to get 4.
2\times \frac{\sqrt{2}}{2}\left(4\sqrt{3}+\sqrt{2}-3\sqrt{48}\right)-4
Cancel out 4 and 4.
2\times \frac{\sqrt{2}}{2}\left(4\sqrt{3}+\sqrt{2}-3\times 4\sqrt{3}\right)-4
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
2\times \frac{\sqrt{2}}{2}\left(4\sqrt{3}+\sqrt{2}-12\sqrt{3}\right)-4
Multiply -3 and 4 to get -12.
2\times \frac{\sqrt{2}}{2}\left(-8\sqrt{3}+\sqrt{2}\right)-4
Combine 4\sqrt{3} and -12\sqrt{3} to get -8\sqrt{3}.
\sqrt{2}\left(-8\sqrt{3}+\sqrt{2}\right)-4
Cancel out 2 and 2.
-8\sqrt{2}\sqrt{3}+\left(\sqrt{2}\right)^{2}-4
Use the distributive property to multiply \sqrt{2} by -8\sqrt{3}+\sqrt{2}.
-8\sqrt{6}+\left(\sqrt{2}\right)^{2}-4
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
-8\sqrt{6}+2-4
The square of \sqrt{2} is 2.
-8\sqrt{6}-2
Subtract 4 from 2 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}