Solve for k
k=-\frac{n\left(2-n\right)}{4}
n\neq 0
Solve for n
\left\{\begin{matrix}n=\sqrt{4k+1}+1\text{, }&k\geq -\frac{1}{4}\\n=-\sqrt{4k+1}+1\text{, }&k\neq 0\text{ and }k\geq -\frac{1}{4}\end{matrix}\right.
Share
Copied to clipboard
2\left(1+\frac{2k}{n}\right)n=nn
Multiply both sides of the equation by n.
2\left(1+\frac{2k}{n}\right)n=n^{2}
Multiply n and n to get n^{2}.
2\left(\frac{n}{n}+\frac{2k}{n}\right)n=n^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{n}{n}.
2\times \frac{n+2k}{n}n=n^{2}
Since \frac{n}{n} and \frac{2k}{n} have the same denominator, add them by adding their numerators.
\frac{2\left(n+2k\right)}{n}n=n^{2}
Express 2\times \frac{n+2k}{n} as a single fraction.
\frac{2\left(n+2k\right)n}{n}=n^{2}
Express \frac{2\left(n+2k\right)}{n}n as a single fraction.
2\left(n+2k\right)=n^{2}
Cancel out n in both numerator and denominator.
2n+4k=n^{2}
Use the distributive property to multiply 2 by n+2k.
4k=n^{2}-2n
Subtract 2n from both sides.
\frac{4k}{4}=\frac{n\left(n-2\right)}{4}
Divide both sides by 4.
k=\frac{n\left(n-2\right)}{4}
Dividing by 4 undoes the multiplication by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}