Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2i\sqrt{5}-3\sqrt{14}\right)\sqrt{6}}{\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{2i\sqrt{5}-3\sqrt{14}}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{\left(2i\sqrt{5}-3\sqrt{14}\right)\sqrt{6}}{6}
The square of \sqrt{6} is 6.
\frac{2i\sqrt{5}\sqrt{6}-3\sqrt{14}\sqrt{6}}{6}
Use the distributive property to multiply 2i\sqrt{5}-3\sqrt{14} by \sqrt{6}.
\frac{2i\sqrt{30}-3\sqrt{14}\sqrt{6}}{6}
To multiply \sqrt{5} and \sqrt{6}, multiply the numbers under the square root.
\frac{2i\sqrt{30}-3\sqrt{84}}{6}
To multiply \sqrt{14} and \sqrt{6}, multiply the numbers under the square root.
\frac{2i\sqrt{30}-3\times 2\sqrt{21}}{6}
Factor 84=2^{2}\times 21. Rewrite the square root of the product \sqrt{2^{2}\times 21} as the product of square roots \sqrt{2^{2}}\sqrt{21}. Take the square root of 2^{2}.
\frac{2i\sqrt{30}-6\sqrt{21}}{6}
Multiply -3 and 2 to get -6.