Evaluate
18
Factor
2\times 3^{2}
Share
Copied to clipboard
\left(2\times 2\sqrt{2}+3\sqrt{5}-7\sqrt{2}\right)\left(\sqrt{72}+\sqrt{20}-4\sqrt{2}\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\left(4\sqrt{2}+3\sqrt{5}-7\sqrt{2}\right)\left(\sqrt{72}+\sqrt{20}-4\sqrt{2}\right)
Multiply 2 and 2 to get 4.
\left(-3\sqrt{2}+3\sqrt{5}\right)\left(\sqrt{72}+\sqrt{20}-4\sqrt{2}\right)
Combine 4\sqrt{2} and -7\sqrt{2} to get -3\sqrt{2}.
\left(-3\sqrt{2}+3\sqrt{5}\right)\left(6\sqrt{2}+\sqrt{20}-4\sqrt{2}\right)
Factor 72=6^{2}\times 2. Rewrite the square root of the product \sqrt{6^{2}\times 2} as the product of square roots \sqrt{6^{2}}\sqrt{2}. Take the square root of 6^{2}.
\left(-3\sqrt{2}+3\sqrt{5}\right)\left(6\sqrt{2}+2\sqrt{5}-4\sqrt{2}\right)
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\left(-3\sqrt{2}+3\sqrt{5}\right)\left(2\sqrt{2}+2\sqrt{5}\right)
Combine 6\sqrt{2} and -4\sqrt{2} to get 2\sqrt{2}.
-6\left(\sqrt{2}\right)^{2}-6\sqrt{2}\sqrt{5}+6\sqrt{5}\sqrt{2}+6\left(\sqrt{5}\right)^{2}
Apply the distributive property by multiplying each term of -3\sqrt{2}+3\sqrt{5} by each term of 2\sqrt{2}+2\sqrt{5}.
-6\times 2-6\sqrt{2}\sqrt{5}+6\sqrt{5}\sqrt{2}+6\left(\sqrt{5}\right)^{2}
The square of \sqrt{2} is 2.
-12-6\sqrt{2}\sqrt{5}+6\sqrt{5}\sqrt{2}+6\left(\sqrt{5}\right)^{2}
Multiply -6 and 2 to get -12.
-12-6\sqrt{10}+6\sqrt{5}\sqrt{2}+6\left(\sqrt{5}\right)^{2}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
-12-6\sqrt{10}+6\sqrt{10}+6\left(\sqrt{5}\right)^{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
-12+6\left(\sqrt{5}\right)^{2}
Combine -6\sqrt{10} and 6\sqrt{10} to get 0.
-12+6\times 5
The square of \sqrt{5} is 5.
-12+30
Multiply 6 and 5 to get 30.
18
Add -12 and 30 to get 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}