Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4\left(\sqrt{7}\right)^{2}+28\sqrt{7}\sqrt{2}+49\left(\sqrt{2}\right)^{2}-\left(2\sqrt{7}-7\sqrt{5}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{7}+7\sqrt{2}\right)^{2}.
4\times 7+28\sqrt{7}\sqrt{2}+49\left(\sqrt{2}\right)^{2}-\left(2\sqrt{7}-7\sqrt{5}\right)
The square of \sqrt{7} is 7.
28+28\sqrt{7}\sqrt{2}+49\left(\sqrt{2}\right)^{2}-\left(2\sqrt{7}-7\sqrt{5}\right)
Multiply 4 and 7 to get 28.
28+28\sqrt{14}+49\left(\sqrt{2}\right)^{2}-\left(2\sqrt{7}-7\sqrt{5}\right)
To multiply \sqrt{7} and \sqrt{2}, multiply the numbers under the square root.
28+28\sqrt{14}+49\times 2-\left(2\sqrt{7}-7\sqrt{5}\right)
The square of \sqrt{2} is 2.
28+28\sqrt{14}+98-\left(2\sqrt{7}-7\sqrt{5}\right)
Multiply 49 and 2 to get 98.
126+28\sqrt{14}-\left(2\sqrt{7}-7\sqrt{5}\right)
Add 28 and 98 to get 126.
126+28\sqrt{14}-2\sqrt{7}+7\sqrt{5}
To find the opposite of 2\sqrt{7}-7\sqrt{5}, find the opposite of each term.