Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(2\sqrt{7}+2\sqrt{3}\right)\sqrt{12}\sqrt{7}-\sqrt{84}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\left(2\sqrt{7}+2\sqrt{3}\right)\times 2\sqrt{3}\sqrt{7}-\sqrt{84}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\left(2\sqrt{7}+2\sqrt{3}\right)\times 2\sqrt{21}-\sqrt{84}
To multiply \sqrt{3} and \sqrt{7}, multiply the numbers under the square root.
\left(4\sqrt{7}+4\sqrt{3}\right)\sqrt{21}-\sqrt{84}
Use the distributive property to multiply 2\sqrt{7}+2\sqrt{3} by 2.
4\sqrt{7}\sqrt{21}+4\sqrt{3}\sqrt{21}-\sqrt{84}
Use the distributive property to multiply 4\sqrt{7}+4\sqrt{3} by \sqrt{21}.
4\sqrt{7}\sqrt{7}\sqrt{3}+4\sqrt{3}\sqrt{21}-\sqrt{84}
Factor 21=7\times 3. Rewrite the square root of the product \sqrt{7\times 3} as the product of square roots \sqrt{7}\sqrt{3}.
4\times 7\sqrt{3}+4\sqrt{3}\sqrt{21}-\sqrt{84}
Multiply \sqrt{7} and \sqrt{7} to get 7.
28\sqrt{3}+4\sqrt{3}\sqrt{21}-\sqrt{84}
Multiply 4 and 7 to get 28.
28\sqrt{3}+4\sqrt{3}\sqrt{3}\sqrt{7}-\sqrt{84}
Factor 21=3\times 7. Rewrite the square root of the product \sqrt{3\times 7} as the product of square roots \sqrt{3}\sqrt{7}.
28\sqrt{3}+4\times 3\sqrt{7}-\sqrt{84}
Multiply \sqrt{3} and \sqrt{3} to get 3.
28\sqrt{3}+12\sqrt{7}-\sqrt{84}
Multiply 4 and 3 to get 12.
28\sqrt{3}+12\sqrt{7}-2\sqrt{21}
Factor 84=2^{2}\times 21. Rewrite the square root of the product \sqrt{2^{2}\times 21} as the product of square roots \sqrt{2^{2}}\sqrt{21}. Take the square root of 2^{2}.