Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

4\left(\sqrt{6}\right)^{2}+12\sqrt{6}\sqrt{3}+9\left(\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{6}+3\sqrt{3}\right)^{2}.
4\times 6+12\sqrt{6}\sqrt{3}+9\left(\sqrt{3}\right)^{2}
The square of \sqrt{6} is 6.
24+12\sqrt{6}\sqrt{3}+9\left(\sqrt{3}\right)^{2}
Multiply 4 and 6 to get 24.
24+12\sqrt{3}\sqrt{2}\sqrt{3}+9\left(\sqrt{3}\right)^{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
24+12\times 3\sqrt{2}+9\left(\sqrt{3}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
24+36\sqrt{2}+9\left(\sqrt{3}\right)^{2}
Multiply 12 and 3 to get 36.
24+36\sqrt{2}+9\times 3
The square of \sqrt{3} is 3.
24+36\sqrt{2}+27
Multiply 9 and 3 to get 27.
51+36\sqrt{2}
Add 24 and 27 to get 51.
4\left(\sqrt{6}\right)^{2}+12\sqrt{6}\sqrt{3}+9\left(\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{6}+3\sqrt{3}\right)^{2}.
4\times 6+12\sqrt{6}\sqrt{3}+9\left(\sqrt{3}\right)^{2}
The square of \sqrt{6} is 6.
24+12\sqrt{6}\sqrt{3}+9\left(\sqrt{3}\right)^{2}
Multiply 4 and 6 to get 24.
24+12\sqrt{3}\sqrt{2}\sqrt{3}+9\left(\sqrt{3}\right)^{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
24+12\times 3\sqrt{2}+9\left(\sqrt{3}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
24+36\sqrt{2}+9\left(\sqrt{3}\right)^{2}
Multiply 12 and 3 to get 36.
24+36\sqrt{2}+9\times 3
The square of \sqrt{3} is 3.
24+36\sqrt{2}+27
Multiply 9 and 3 to get 27.
51+36\sqrt{2}
Add 24 and 27 to get 51.