Evaluate
30-6\sqrt{2}\approx 21.514718626
Share
Copied to clipboard
\left(2\sqrt{6}+2\sqrt{3}\right)\left(\sqrt{96}-3\sqrt{3}\right)-2\sqrt{72}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\left(2\sqrt{6}+2\sqrt{3}\right)\left(4\sqrt{6}-3\sqrt{3}\right)-2\sqrt{72}
Factor 96=4^{2}\times 6. Rewrite the square root of the product \sqrt{4^{2}\times 6} as the product of square roots \sqrt{4^{2}}\sqrt{6}. Take the square root of 4^{2}.
8\left(\sqrt{6}\right)^{2}-6\sqrt{3}\sqrt{6}+8\sqrt{3}\sqrt{6}-6\left(\sqrt{3}\right)^{2}-2\sqrt{72}
Apply the distributive property by multiplying each term of 2\sqrt{6}+2\sqrt{3} by each term of 4\sqrt{6}-3\sqrt{3}.
8\times 6-6\sqrt{3}\sqrt{6}+8\sqrt{3}\sqrt{6}-6\left(\sqrt{3}\right)^{2}-2\sqrt{72}
The square of \sqrt{6} is 6.
48-6\sqrt{3}\sqrt{6}+8\sqrt{3}\sqrt{6}-6\left(\sqrt{3}\right)^{2}-2\sqrt{72}
Multiply 8 and 6 to get 48.
48-6\sqrt{3}\sqrt{3}\sqrt{2}+8\sqrt{3}\sqrt{6}-6\left(\sqrt{3}\right)^{2}-2\sqrt{72}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
48-6\times 3\sqrt{2}+8\sqrt{3}\sqrt{6}-6\left(\sqrt{3}\right)^{2}-2\sqrt{72}
Multiply \sqrt{3} and \sqrt{3} to get 3.
48-18\sqrt{2}+8\sqrt{3}\sqrt{6}-6\left(\sqrt{3}\right)^{2}-2\sqrt{72}
Multiply -6 and 3 to get -18.
48-18\sqrt{2}+8\sqrt{3}\sqrt{3}\sqrt{2}-6\left(\sqrt{3}\right)^{2}-2\sqrt{72}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
48-18\sqrt{2}+8\times 3\sqrt{2}-6\left(\sqrt{3}\right)^{2}-2\sqrt{72}
Multiply \sqrt{3} and \sqrt{3} to get 3.
48-18\sqrt{2}+24\sqrt{2}-6\left(\sqrt{3}\right)^{2}-2\sqrt{72}
Multiply 8 and 3 to get 24.
48+6\sqrt{2}-6\left(\sqrt{3}\right)^{2}-2\sqrt{72}
Combine -18\sqrt{2} and 24\sqrt{2} to get 6\sqrt{2}.
48+6\sqrt{2}-6\times 3-2\sqrt{72}
The square of \sqrt{3} is 3.
48+6\sqrt{2}-18-2\sqrt{72}
Multiply -6 and 3 to get -18.
30+6\sqrt{2}-2\sqrt{72}
Subtract 18 from 48 to get 30.
30+6\sqrt{2}-2\times 6\sqrt{2}
Factor 72=6^{2}\times 2. Rewrite the square root of the product \sqrt{6^{2}\times 2} as the product of square roots \sqrt{6^{2}}\sqrt{2}. Take the square root of 6^{2}.
30+6\sqrt{2}-12\sqrt{2}
Multiply -2 and 6 to get -12.
30-6\sqrt{2}
Combine 6\sqrt{2} and -12\sqrt{2} to get -6\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}