( 2 \sqrt { 5 } - 2 \sqrt { 3 } ) ( \sqrt { 12 } + \sqrt { 20 }
Evaluate
8
Factor
2^{3}
Share
Copied to clipboard
\left(2\sqrt{5}-2\sqrt{3}\right)\left(2\sqrt{3}+\sqrt{20}\right)
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\left(2\sqrt{5}-2\sqrt{3}\right)\left(2\sqrt{3}+2\sqrt{5}\right)
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\left(2\sqrt{5}\right)^{2}-\left(2\sqrt{3}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}\left(\sqrt{5}\right)^{2}-\left(2\sqrt{3}\right)^{2}
Expand \left(2\sqrt{5}\right)^{2}.
4\left(\sqrt{5}\right)^{2}-\left(2\sqrt{3}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\times 5-\left(2\sqrt{3}\right)^{2}
The square of \sqrt{5} is 5.
20-\left(2\sqrt{3}\right)^{2}
Multiply 4 and 5 to get 20.
20-2^{2}\left(\sqrt{3}\right)^{2}
Expand \left(2\sqrt{3}\right)^{2}.
20-4\left(\sqrt{3}\right)^{2}
Calculate 2 to the power of 2 and get 4.
20-4\times 3
The square of \sqrt{3} is 3.
20-12
Multiply 4 and 3 to get 12.
8
Subtract 12 from 20 to get 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}