Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

4\left(\sqrt{5}\right)^{2}-4\sqrt{5}\sqrt{15}+\left(\sqrt{15}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{5}-\sqrt{15}\right)^{2}.
4\times 5-4\sqrt{5}\sqrt{15}+\left(\sqrt{15}\right)^{2}
The square of \sqrt{5} is 5.
20-4\sqrt{5}\sqrt{15}+\left(\sqrt{15}\right)^{2}
Multiply 4 and 5 to get 20.
20-4\sqrt{5}\sqrt{5}\sqrt{3}+\left(\sqrt{15}\right)^{2}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
20-4\times 5\sqrt{3}+\left(\sqrt{15}\right)^{2}
Multiply \sqrt{5} and \sqrt{5} to get 5.
20-20\sqrt{3}+\left(\sqrt{15}\right)^{2}
Multiply -4 and 5 to get -20.
20-20\sqrt{3}+15
The square of \sqrt{15} is 15.
35-20\sqrt{3}
Add 20 and 15 to get 35.
4\left(\sqrt{5}\right)^{2}-4\sqrt{5}\sqrt{15}+\left(\sqrt{15}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{5}-\sqrt{15}\right)^{2}.
4\times 5-4\sqrt{5}\sqrt{15}+\left(\sqrt{15}\right)^{2}
The square of \sqrt{5} is 5.
20-4\sqrt{5}\sqrt{15}+\left(\sqrt{15}\right)^{2}
Multiply 4 and 5 to get 20.
20-4\sqrt{5}\sqrt{5}\sqrt{3}+\left(\sqrt{15}\right)^{2}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
20-4\times 5\sqrt{3}+\left(\sqrt{15}\right)^{2}
Multiply \sqrt{5} and \sqrt{5} to get 5.
20-20\sqrt{3}+\left(\sqrt{15}\right)^{2}
Multiply -4 and 5 to get -20.
20-20\sqrt{3}+15
The square of \sqrt{15} is 15.
35-20\sqrt{3}
Add 20 and 15 to get 35.