Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\left(\sqrt{5}\right)^{2}-5\sqrt{5}\sqrt{2}-25\left(\sqrt{2}\right)^{2}-\left(\sqrt{5}-\sqrt{2}\right)^{2}
Use the distributive property to multiply 2\sqrt{5}+5\sqrt{2} by \sqrt{5}-5\sqrt{2} and combine like terms.
2\times 5-5\sqrt{5}\sqrt{2}-25\left(\sqrt{2}\right)^{2}-\left(\sqrt{5}-\sqrt{2}\right)^{2}
The square of \sqrt{5} is 5.
10-5\sqrt{5}\sqrt{2}-25\left(\sqrt{2}\right)^{2}-\left(\sqrt{5}-\sqrt{2}\right)^{2}
Multiply 2 and 5 to get 10.
10-5\sqrt{10}-25\left(\sqrt{2}\right)^{2}-\left(\sqrt{5}-\sqrt{2}\right)^{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
10-5\sqrt{10}-25\times 2-\left(\sqrt{5}-\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
10-5\sqrt{10}-50-\left(\sqrt{5}-\sqrt{2}\right)^{2}
Multiply -25 and 2 to get -50.
-40-5\sqrt{10}-\left(\sqrt{5}-\sqrt{2}\right)^{2}
Subtract 50 from 10 to get -40.
-40-5\sqrt{10}-\left(\left(\sqrt{5}\right)^{2}-2\sqrt{5}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-\sqrt{2}\right)^{2}.
-40-5\sqrt{10}-\left(5-2\sqrt{5}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
The square of \sqrt{5} is 5.
-40-5\sqrt{10}-\left(5-2\sqrt{10}+\left(\sqrt{2}\right)^{2}\right)
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
-40-5\sqrt{10}-\left(5-2\sqrt{10}+2\right)
The square of \sqrt{2} is 2.
-40-5\sqrt{10}-\left(7-2\sqrt{10}\right)
Add 5 and 2 to get 7.
-40-5\sqrt{10}-7+2\sqrt{10}
To find the opposite of 7-2\sqrt{10}, find the opposite of each term.
-47-5\sqrt{10}+2\sqrt{10}
Subtract 7 from -40 to get -47.
-47-3\sqrt{10}
Combine -5\sqrt{10} and 2\sqrt{10} to get -3\sqrt{10}.