Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

4\left(\sqrt{5}\right)^{2}+12\sqrt{5}\sqrt{6}+9\left(\sqrt{6}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{5}+3\sqrt{6}\right)^{2}.
4\times 5+12\sqrt{5}\sqrt{6}+9\left(\sqrt{6}\right)^{2}
The square of \sqrt{5} is 5.
20+12\sqrt{5}\sqrt{6}+9\left(\sqrt{6}\right)^{2}
Multiply 4 and 5 to get 20.
20+12\sqrt{30}+9\left(\sqrt{6}\right)^{2}
To multiply \sqrt{5} and \sqrt{6}, multiply the numbers under the square root.
20+12\sqrt{30}+9\times 6
The square of \sqrt{6} is 6.
20+12\sqrt{30}+54
Multiply 9 and 6 to get 54.
74+12\sqrt{30}
Add 20 and 54 to get 74.
4\left(\sqrt{5}\right)^{2}+12\sqrt{5}\sqrt{6}+9\left(\sqrt{6}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{5}+3\sqrt{6}\right)^{2}.
4\times 5+12\sqrt{5}\sqrt{6}+9\left(\sqrt{6}\right)^{2}
The square of \sqrt{5} is 5.
20+12\sqrt{5}\sqrt{6}+9\left(\sqrt{6}\right)^{2}
Multiply 4 and 5 to get 20.
20+12\sqrt{30}+9\left(\sqrt{6}\right)^{2}
To multiply \sqrt{5} and \sqrt{6}, multiply the numbers under the square root.
20+12\sqrt{30}+9\times 6
The square of \sqrt{6} is 6.
20+12\sqrt{30}+54
Multiply 9 and 6 to get 54.
74+12\sqrt{30}
Add 20 and 54 to get 74.