Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(2\times 2+\sqrt{12}\right)\left(\sqrt{12}-\sqrt{4}\right)-\sqrt{44}
Calculate the square root of 4 and get 2.
\left(4+\sqrt{12}\right)\left(\sqrt{12}-\sqrt{4}\right)-\sqrt{44}
Multiply 2 and 2 to get 4.
\left(4+2\sqrt{3}\right)\left(\sqrt{12}-\sqrt{4}\right)-\sqrt{44}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\left(4+2\sqrt{3}\right)\left(2\sqrt{3}-\sqrt{4}\right)-\sqrt{44}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\left(4+2\sqrt{3}\right)\left(2\sqrt{3}-2\right)-\sqrt{44}
Calculate the square root of 4 and get 2.
8\sqrt{3}-8+4\left(\sqrt{3}\right)^{2}-4\sqrt{3}-\sqrt{44}
Apply the distributive property by multiplying each term of 4+2\sqrt{3} by each term of 2\sqrt{3}-2.
8\sqrt{3}-8+4\times 3-4\sqrt{3}-\sqrt{44}
The square of \sqrt{3} is 3.
8\sqrt{3}-8+12-4\sqrt{3}-\sqrt{44}
Multiply 4 and 3 to get 12.
8\sqrt{3}+4-4\sqrt{3}-\sqrt{44}
Add -8 and 12 to get 4.
4\sqrt{3}+4-\sqrt{44}
Combine 8\sqrt{3} and -4\sqrt{3} to get 4\sqrt{3}.
4\sqrt{3}+4-2\sqrt{11}
Factor 44=2^{2}\times 11. Rewrite the square root of the product \sqrt{2^{2}\times 11} as the product of square roots \sqrt{2^{2}}\sqrt{11}. Take the square root of 2^{2}.