Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4\left(\sqrt{3}\right)^{2}-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}+2\sqrt{6}\left(\sqrt{3}+2\right)-\left(\sqrt{5}+1\right)\left(1-\sqrt{7}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{3}-\sqrt{2}\right)^{2}.
4\times 3-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}+2\sqrt{6}\left(\sqrt{3}+2\right)-\left(\sqrt{5}+1\right)\left(1-\sqrt{7}\right)
The square of \sqrt{3} is 3.
12-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}+2\sqrt{6}\left(\sqrt{3}+2\right)-\left(\sqrt{5}+1\right)\left(1-\sqrt{7}\right)
Multiply 4 and 3 to get 12.
12-4\sqrt{6}+\left(\sqrt{2}\right)^{2}+2\sqrt{6}\left(\sqrt{3}+2\right)-\left(\sqrt{5}+1\right)\left(1-\sqrt{7}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
12-4\sqrt{6}+2+2\sqrt{6}\left(\sqrt{3}+2\right)-\left(\sqrt{5}+1\right)\left(1-\sqrt{7}\right)
The square of \sqrt{2} is 2.
14-4\sqrt{6}+2\sqrt{6}\left(\sqrt{3}+2\right)-\left(\sqrt{5}+1\right)\left(1-\sqrt{7}\right)
Add 12 and 2 to get 14.
14-4\sqrt{6}+2\sqrt{6}\sqrt{3}+4\sqrt{6}-\left(\sqrt{5}+1\right)\left(1-\sqrt{7}\right)
Use the distributive property to multiply 2\sqrt{6} by \sqrt{3}+2.
14-4\sqrt{6}+2\sqrt{3}\sqrt{2}\sqrt{3}+4\sqrt{6}-\left(\sqrt{5}+1\right)\left(1-\sqrt{7}\right)
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
14-4\sqrt{6}+2\times 3\sqrt{2}+4\sqrt{6}-\left(\sqrt{5}+1\right)\left(1-\sqrt{7}\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
14-4\sqrt{6}+6\sqrt{2}+4\sqrt{6}-\left(\sqrt{5}+1\right)\left(1-\sqrt{7}\right)
Multiply 2 and 3 to get 6.
14+6\sqrt{2}-\left(\sqrt{5}+1\right)\left(1-\sqrt{7}\right)
Combine -4\sqrt{6} and 4\sqrt{6} to get 0.
14+6\sqrt{2}-\left(\sqrt{5}-\sqrt{5}\sqrt{7}+1-\sqrt{7}\right)
Use the distributive property to multiply \sqrt{5}+1 by 1-\sqrt{7}.
14+6\sqrt{2}-\left(\sqrt{5}-\sqrt{35}+1-\sqrt{7}\right)
To multiply \sqrt{5} and \sqrt{7}, multiply the numbers under the square root.
14+6\sqrt{2}-\sqrt{5}+\sqrt{35}-1+\sqrt{7}
To find the opposite of \sqrt{5}-\sqrt{35}+1-\sqrt{7}, find the opposite of each term.
13+6\sqrt{2}-\sqrt{5}+\sqrt{35}+\sqrt{7}
Subtract 1 from 14 to get 13.