Solve for a
a=3
Share
Copied to clipboard
2^{2}\left(\sqrt{3}\right)^{2}-a^{2}=2^{2}-\left(4-a\right)^{2}
Expand \left(2\sqrt{3}\right)^{2}.
4\left(\sqrt{3}\right)^{2}-a^{2}=2^{2}-\left(4-a\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\times 3-a^{2}=2^{2}-\left(4-a\right)^{2}
The square of \sqrt{3} is 3.
12-a^{2}=2^{2}-\left(4-a\right)^{2}
Multiply 4 and 3 to get 12.
12-a^{2}=4-\left(4-a\right)^{2}
Calculate 2 to the power of 2 and get 4.
12-a^{2}=4-\left(16-8a+a^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-a\right)^{2}.
12-a^{2}=4-16+8a-a^{2}
To find the opposite of 16-8a+a^{2}, find the opposite of each term.
12-a^{2}=-12+8a-a^{2}
Subtract 16 from 4 to get -12.
12-a^{2}-8a=-12-a^{2}
Subtract 8a from both sides.
12-a^{2}-8a+a^{2}=-12
Add a^{2} to both sides.
12-8a=-12
Combine -a^{2} and a^{2} to get 0.
-8a=-12-12
Subtract 12 from both sides.
-8a=-24
Subtract 12 from -12 to get -24.
a=\frac{-24}{-8}
Divide both sides by -8.
a=3
Divide -24 by -8 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}