Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2^{2}\left(\sqrt{3}\right)^{2}+\left(3-2\sqrt{2}\right)\left(5+\sqrt{8}\right)
Expand \left(2\sqrt{3}\right)^{2}.
4\left(\sqrt{3}\right)^{2}+\left(3-2\sqrt{2}\right)\left(5+\sqrt{8}\right)
Calculate 2 to the power of 2 and get 4.
4\times 3+\left(3-2\sqrt{2}\right)\left(5+\sqrt{8}\right)
The square of \sqrt{3} is 3.
12+\left(3-2\sqrt{2}\right)\left(5+\sqrt{8}\right)
Multiply 4 and 3 to get 12.
12+\left(3-2\sqrt{2}\right)\left(5+2\sqrt{2}\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
12+15-4\sqrt{2}-4\left(\sqrt{2}\right)^{2}
Use the distributive property to multiply 3-2\sqrt{2} by 5+2\sqrt{2} and combine like terms.
12+15-4\sqrt{2}-4\times 2
The square of \sqrt{2} is 2.
12+15-4\sqrt{2}-8
Multiply -4 and 2 to get -8.
12+7-4\sqrt{2}
Subtract 8 from 15 to get 7.
19-4\sqrt{2}
Add 12 and 7 to get 19.