Evaluate
8\sqrt{3}+10\approx 23.856406461
Factor
2 {(4 \sqrt{3} + 5)} = 23.856406461
Share
Copied to clipboard
6\left(\sqrt{3}\right)^{2}-4\sqrt{3}+12\sqrt{3}-8
Apply the distributive property by multiplying each term of 2\sqrt{3}+4 by each term of 3\sqrt{3}-2.
6\times 3-4\sqrt{3}+12\sqrt{3}-8
The square of \sqrt{3} is 3.
18-4\sqrt{3}+12\sqrt{3}-8
Multiply 6 and 3 to get 18.
18+8\sqrt{3}-8
Combine -4\sqrt{3} and 12\sqrt{3} to get 8\sqrt{3}.
10+8\sqrt{3}
Subtract 8 from 18 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}