Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(2\sqrt{3}\right)^{2}-\left(3\sqrt{2}\right)^{2}+\left(2\sqrt{2}+3\sqrt{3}\right)^{2}
Consider \left(2\sqrt{3}+3\sqrt{2}\right)\left(2\sqrt{3}-3\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}\left(\sqrt{3}\right)^{2}-\left(3\sqrt{2}\right)^{2}+\left(2\sqrt{2}+3\sqrt{3}\right)^{2}
Expand \left(2\sqrt{3}\right)^{2}.
4\left(\sqrt{3}\right)^{2}-\left(3\sqrt{2}\right)^{2}+\left(2\sqrt{2}+3\sqrt{3}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\times 3-\left(3\sqrt{2}\right)^{2}+\left(2\sqrt{2}+3\sqrt{3}\right)^{2}
The square of \sqrt{3} is 3.
12-\left(3\sqrt{2}\right)^{2}+\left(2\sqrt{2}+3\sqrt{3}\right)^{2}
Multiply 4 and 3 to get 12.
12-3^{2}\left(\sqrt{2}\right)^{2}+\left(2\sqrt{2}+3\sqrt{3}\right)^{2}
Expand \left(3\sqrt{2}\right)^{2}.
12-9\left(\sqrt{2}\right)^{2}+\left(2\sqrt{2}+3\sqrt{3}\right)^{2}
Calculate 3 to the power of 2 and get 9.
12-9\times 2+\left(2\sqrt{2}+3\sqrt{3}\right)^{2}
The square of \sqrt{2} is 2.
12-18+\left(2\sqrt{2}+3\sqrt{3}\right)^{2}
Multiply 9 and 2 to get 18.
-6+\left(2\sqrt{2}+3\sqrt{3}\right)^{2}
Subtract 18 from 12 to get -6.
-6+4\left(\sqrt{2}\right)^{2}+12\sqrt{2}\sqrt{3}+9\left(\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{2}+3\sqrt{3}\right)^{2}.
-6+4\times 2+12\sqrt{2}\sqrt{3}+9\left(\sqrt{3}\right)^{2}
The square of \sqrt{2} is 2.
-6+8+12\sqrt{2}\sqrt{3}+9\left(\sqrt{3}\right)^{2}
Multiply 4 and 2 to get 8.
-6+8+12\sqrt{6}+9\left(\sqrt{3}\right)^{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
-6+8+12\sqrt{6}+9\times 3
The square of \sqrt{3} is 3.
-6+8+12\sqrt{6}+27
Multiply 9 and 3 to get 27.
-6+35+12\sqrt{6}
Add 8 and 27 to get 35.
29+12\sqrt{6}
Add -6 and 35 to get 29.