Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4\left(\sqrt{2}\right)^{2}-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{2}-1\right)^{2}.
4\times 2-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
The square of \sqrt{2} is 2.
8-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
Multiply 4 and 2 to get 8.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
Add 8 and 1 to get 9.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{2\sqrt{3}-3}{\sqrt{3}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{3}-3}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{3\left(9-4\sqrt{2}\right)}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 9-4\sqrt{2} times \frac{3}{3}.
\frac{3\left(9-4\sqrt{2}\right)+\left(2\sqrt{3}-3\right)\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Since \frac{3\left(9-4\sqrt{2}\right)}{3} and \frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3} have the same denominator, add them by adding their numerators.
\frac{27-12\sqrt{2}+6-3\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Do the multiplications in 3\left(9-4\sqrt{2}\right)+\left(2\sqrt{3}-3\right)\sqrt{3}.
\frac{33-12\sqrt{2}-3\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Do the calculations in 27-12\sqrt{2}+6-3\sqrt{3}.
11-4\sqrt{2}-\sqrt{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Divide each term of 33-12\sqrt{2}-3\sqrt{3} by 3 to get 11-4\sqrt{2}-\sqrt{3}.
11-4\sqrt{2}-\sqrt{3}-4\left(\sqrt{3}\right)^{2}+1
Use the distributive property to multiply 2\sqrt{3}-1 by -2\sqrt{3}-1 and combine like terms.
11-4\sqrt{2}-\sqrt{3}-4\times 3+1
The square of \sqrt{3} is 3.
11-4\sqrt{2}-\sqrt{3}-12+1
Multiply -4 and 3 to get -12.
11-4\sqrt{2}-\sqrt{3}-11
Add -12 and 1 to get -11.
-4\sqrt{2}-\sqrt{3}
Subtract 11 from 11 to get 0.