Evaluate
4\sqrt{3}+4-\sqrt{10}-\sqrt{30}\approx 2.288699995
Share
Copied to clipboard
2\left(\sqrt{2}\right)^{2}+2\sqrt{2}\sqrt{6}-\sqrt{5}\sqrt{2}-\sqrt{5}\sqrt{6}
Apply the distributive property by multiplying each term of 2\sqrt{2}-\sqrt{5} by each term of \sqrt{2}+\sqrt{6}.
2\times 2+2\sqrt{2}\sqrt{6}-\sqrt{5}\sqrt{2}-\sqrt{5}\sqrt{6}
The square of \sqrt{2} is 2.
4+2\sqrt{2}\sqrt{6}-\sqrt{5}\sqrt{2}-\sqrt{5}\sqrt{6}
Multiply 2 and 2 to get 4.
4+2\sqrt{2}\sqrt{2}\sqrt{3}-\sqrt{5}\sqrt{2}-\sqrt{5}\sqrt{6}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
4+2\times 2\sqrt{3}-\sqrt{5}\sqrt{2}-\sqrt{5}\sqrt{6}
Multiply \sqrt{2} and \sqrt{2} to get 2.
4+4\sqrt{3}-\sqrt{5}\sqrt{2}-\sqrt{5}\sqrt{6}
Multiply 2 and 2 to get 4.
4+4\sqrt{3}-\sqrt{10}-\sqrt{5}\sqrt{6}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
4+4\sqrt{3}-\sqrt{10}-\sqrt{30}
To multiply \sqrt{5} and \sqrt{6}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}