Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\left(\sqrt{2}\right)^{2}+2\sqrt{2}\sqrt{6}-\sqrt{5}\sqrt{2}-\sqrt{5}\sqrt{6}
Apply the distributive property by multiplying each term of 2\sqrt{2}-\sqrt{5} by each term of \sqrt{2}+\sqrt{6}.
2\times 2+2\sqrt{2}\sqrt{6}-\sqrt{5}\sqrt{2}-\sqrt{5}\sqrt{6}
The square of \sqrt{2} is 2.
4+2\sqrt{2}\sqrt{6}-\sqrt{5}\sqrt{2}-\sqrt{5}\sqrt{6}
Multiply 2 and 2 to get 4.
4+2\sqrt{2}\sqrt{2}\sqrt{3}-\sqrt{5}\sqrt{2}-\sqrt{5}\sqrt{6}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
4+2\times 2\sqrt{3}-\sqrt{5}\sqrt{2}-\sqrt{5}\sqrt{6}
Multiply \sqrt{2} and \sqrt{2} to get 2.
4+4\sqrt{3}-\sqrt{5}\sqrt{2}-\sqrt{5}\sqrt{6}
Multiply 2 and 2 to get 4.
4+4\sqrt{3}-\sqrt{10}-\sqrt{5}\sqrt{6}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
4+4\sqrt{3}-\sqrt{10}-\sqrt{30}
To multiply \sqrt{5} and \sqrt{6}, multiply the numbers under the square root.