Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\left(\sqrt{2}\right)^{2}+4\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{2}-2\left(\sqrt{3}\right)^{2}-\sqrt{24}
Apply the distributive property by multiplying each term of 2\sqrt{2}-\sqrt{3} by each term of \sqrt{2}+2\sqrt{3}.
2\times 2+4\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{2}-2\left(\sqrt{3}\right)^{2}-\sqrt{24}
The square of \sqrt{2} is 2.
4+4\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{2}-2\left(\sqrt{3}\right)^{2}-\sqrt{24}
Multiply 2 and 2 to get 4.
4+4\sqrt{6}-\sqrt{3}\sqrt{2}-2\left(\sqrt{3}\right)^{2}-\sqrt{24}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
4+4\sqrt{6}-\sqrt{6}-2\left(\sqrt{3}\right)^{2}-\sqrt{24}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
4+3\sqrt{6}-2\left(\sqrt{3}\right)^{2}-\sqrt{24}
Combine 4\sqrt{6} and -\sqrt{6} to get 3\sqrt{6}.
4+3\sqrt{6}-2\times 3-\sqrt{24}
The square of \sqrt{3} is 3.
4+3\sqrt{6}-6-\sqrt{24}
Multiply -2 and 3 to get -6.
-2+3\sqrt{6}-\sqrt{24}
Subtract 6 from 4 to get -2.
-2+3\sqrt{6}-2\sqrt{6}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
-2+\sqrt{6}
Combine 3\sqrt{6} and -2\sqrt{6} to get \sqrt{6}.