Evaluate
-7\sqrt{2}\approx -9.899494937
Expand
-7\sqrt{2}
Share
Copied to clipboard
4\left(\sqrt{2}\right)^{2}-\frac{7}{2}\sqrt{2}+\frac{49}{64}-\left(2\sqrt{2}+\frac{7}{8}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{2}-\frac{7}{8}\right)^{2}.
4\times 2-\frac{7}{2}\sqrt{2}+\frac{49}{64}-\left(2\sqrt{2}+\frac{7}{8}\right)^{2}
The square of \sqrt{2} is 2.
8-\frac{7}{2}\sqrt{2}+\frac{49}{64}-\left(2\sqrt{2}+\frac{7}{8}\right)^{2}
Multiply 4 and 2 to get 8.
\frac{561}{64}-\frac{7}{2}\sqrt{2}-\left(2\sqrt{2}+\frac{7}{8}\right)^{2}
Add 8 and \frac{49}{64} to get \frac{561}{64}.
\frac{561}{64}-\frac{7}{2}\sqrt{2}-\left(4\left(\sqrt{2}\right)^{2}+\frac{7}{2}\sqrt{2}+\frac{49}{64}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{2}+\frac{7}{8}\right)^{2}.
\frac{561}{64}-\frac{7}{2}\sqrt{2}-\left(4\times 2+\frac{7}{2}\sqrt{2}+\frac{49}{64}\right)
The square of \sqrt{2} is 2.
\frac{561}{64}-\frac{7}{2}\sqrt{2}-\left(8+\frac{7}{2}\sqrt{2}+\frac{49}{64}\right)
Multiply 4 and 2 to get 8.
\frac{561}{64}-\frac{7}{2}\sqrt{2}-\left(\frac{561}{64}+\frac{7}{2}\sqrt{2}\right)
Add 8 and \frac{49}{64} to get \frac{561}{64}.
\frac{561}{64}-\frac{7}{2}\sqrt{2}-\frac{561}{64}-\frac{7}{2}\sqrt{2}
To find the opposite of \frac{561}{64}+\frac{7}{2}\sqrt{2}, find the opposite of each term.
-\frac{7}{2}\sqrt{2}-\frac{7}{2}\sqrt{2}
Subtract \frac{561}{64} from \frac{561}{64} to get 0.
-7\sqrt{2}
Combine -\frac{7}{2}\sqrt{2} and -\frac{7}{2}\sqrt{2} to get -7\sqrt{2}.
4\left(\sqrt{2}\right)^{2}-\frac{7}{2}\sqrt{2}+\frac{49}{64}-\left(2\sqrt{2}+\frac{7}{8}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{2}-\frac{7}{8}\right)^{2}.
4\times 2-\frac{7}{2}\sqrt{2}+\frac{49}{64}-\left(2\sqrt{2}+\frac{7}{8}\right)^{2}
The square of \sqrt{2} is 2.
8-\frac{7}{2}\sqrt{2}+\frac{49}{64}-\left(2\sqrt{2}+\frac{7}{8}\right)^{2}
Multiply 4 and 2 to get 8.
\frac{561}{64}-\frac{7}{2}\sqrt{2}-\left(2\sqrt{2}+\frac{7}{8}\right)^{2}
Add 8 and \frac{49}{64} to get \frac{561}{64}.
\frac{561}{64}-\frac{7}{2}\sqrt{2}-\left(4\left(\sqrt{2}\right)^{2}+\frac{7}{2}\sqrt{2}+\frac{49}{64}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{2}+\frac{7}{8}\right)^{2}.
\frac{561}{64}-\frac{7}{2}\sqrt{2}-\left(4\times 2+\frac{7}{2}\sqrt{2}+\frac{49}{64}\right)
The square of \sqrt{2} is 2.
\frac{561}{64}-\frac{7}{2}\sqrt{2}-\left(8+\frac{7}{2}\sqrt{2}+\frac{49}{64}\right)
Multiply 4 and 2 to get 8.
\frac{561}{64}-\frac{7}{2}\sqrt{2}-\left(\frac{561}{64}+\frac{7}{2}\sqrt{2}\right)
Add 8 and \frac{49}{64} to get \frac{561}{64}.
\frac{561}{64}-\frac{7}{2}\sqrt{2}-\frac{561}{64}-\frac{7}{2}\sqrt{2}
To find the opposite of \frac{561}{64}+\frac{7}{2}\sqrt{2}, find the opposite of each term.
-\frac{7}{2}\sqrt{2}-\frac{7}{2}\sqrt{2}
Subtract \frac{561}{64} from \frac{561}{64} to get 0.
-7\sqrt{2}
Combine -\frac{7}{2}\sqrt{2} and -\frac{7}{2}\sqrt{2} to get -7\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}