Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

4\left(\sqrt{2}\right)^{2}-\frac{7}{2}\sqrt{2}+\frac{49}{64}-\left(2\sqrt{2}+\frac{7}{8}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{2}-\frac{7}{8}\right)^{2}.
4\times 2-\frac{7}{2}\sqrt{2}+\frac{49}{64}-\left(2\sqrt{2}+\frac{7}{8}\right)^{2}
The square of \sqrt{2} is 2.
8-\frac{7}{2}\sqrt{2}+\frac{49}{64}-\left(2\sqrt{2}+\frac{7}{8}\right)^{2}
Multiply 4 and 2 to get 8.
\frac{561}{64}-\frac{7}{2}\sqrt{2}-\left(2\sqrt{2}+\frac{7}{8}\right)^{2}
Add 8 and \frac{49}{64} to get \frac{561}{64}.
\frac{561}{64}-\frac{7}{2}\sqrt{2}-\left(4\left(\sqrt{2}\right)^{2}+\frac{7}{2}\sqrt{2}+\frac{49}{64}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{2}+\frac{7}{8}\right)^{2}.
\frac{561}{64}-\frac{7}{2}\sqrt{2}-\left(4\times 2+\frac{7}{2}\sqrt{2}+\frac{49}{64}\right)
The square of \sqrt{2} is 2.
\frac{561}{64}-\frac{7}{2}\sqrt{2}-\left(8+\frac{7}{2}\sqrt{2}+\frac{49}{64}\right)
Multiply 4 and 2 to get 8.
\frac{561}{64}-\frac{7}{2}\sqrt{2}-\left(\frac{561}{64}+\frac{7}{2}\sqrt{2}\right)
Add 8 and \frac{49}{64} to get \frac{561}{64}.
\frac{561}{64}-\frac{7}{2}\sqrt{2}-\frac{561}{64}-\frac{7}{2}\sqrt{2}
To find the opposite of \frac{561}{64}+\frac{7}{2}\sqrt{2}, find the opposite of each term.
-\frac{7}{2}\sqrt{2}-\frac{7}{2}\sqrt{2}
Subtract \frac{561}{64} from \frac{561}{64} to get 0.
-7\sqrt{2}
Combine -\frac{7}{2}\sqrt{2} and -\frac{7}{2}\sqrt{2} to get -7\sqrt{2}.
4\left(\sqrt{2}\right)^{2}-\frac{7}{2}\sqrt{2}+\frac{49}{64}-\left(2\sqrt{2}+\frac{7}{8}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{2}-\frac{7}{8}\right)^{2}.
4\times 2-\frac{7}{2}\sqrt{2}+\frac{49}{64}-\left(2\sqrt{2}+\frac{7}{8}\right)^{2}
The square of \sqrt{2} is 2.
8-\frac{7}{2}\sqrt{2}+\frac{49}{64}-\left(2\sqrt{2}+\frac{7}{8}\right)^{2}
Multiply 4 and 2 to get 8.
\frac{561}{64}-\frac{7}{2}\sqrt{2}-\left(2\sqrt{2}+\frac{7}{8}\right)^{2}
Add 8 and \frac{49}{64} to get \frac{561}{64}.
\frac{561}{64}-\frac{7}{2}\sqrt{2}-\left(4\left(\sqrt{2}\right)^{2}+\frac{7}{2}\sqrt{2}+\frac{49}{64}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{2}+\frac{7}{8}\right)^{2}.
\frac{561}{64}-\frac{7}{2}\sqrt{2}-\left(4\times 2+\frac{7}{2}\sqrt{2}+\frac{49}{64}\right)
The square of \sqrt{2} is 2.
\frac{561}{64}-\frac{7}{2}\sqrt{2}-\left(8+\frac{7}{2}\sqrt{2}+\frac{49}{64}\right)
Multiply 4 and 2 to get 8.
\frac{561}{64}-\frac{7}{2}\sqrt{2}-\left(\frac{561}{64}+\frac{7}{2}\sqrt{2}\right)
Add 8 and \frac{49}{64} to get \frac{561}{64}.
\frac{561}{64}-\frac{7}{2}\sqrt{2}-\frac{561}{64}-\frac{7}{2}\sqrt{2}
To find the opposite of \frac{561}{64}+\frac{7}{2}\sqrt{2}, find the opposite of each term.
-\frac{7}{2}\sqrt{2}-\frac{7}{2}\sqrt{2}
Subtract \frac{561}{64} from \frac{561}{64} to get 0.
-7\sqrt{2}
Combine -\frac{7}{2}\sqrt{2} and -\frac{7}{2}\sqrt{2} to get -7\sqrt{2}.