Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\sqrt{3}xx\sqrt{3}
Multiply both sides of the equation by 3.
3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3xx
Multiply \sqrt{3} and \sqrt{3} to get 3.
3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Multiply x and x to get x^{2}.
3\times 2^{2}\left(\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Expand \left(2\sqrt{2}\right)^{2}.
3\times 4\left(\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Calculate 2 to the power of 2 and get 4.
3\times 4\times 2=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
The square of \sqrt{2} is 2.
3\times 8=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Multiply 4 and 2 to get 8.
24=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Multiply 3 and 8 to get 24.
24=3\left(\left(\sqrt{3}\right)^{2}x^{2}+x^{2}\right)-2\times 3x^{2}
Expand \left(\sqrt{3}x\right)^{2}.
24=3\left(3x^{2}+x^{2}\right)-2\times 3x^{2}
The square of \sqrt{3} is 3.
24=3\times 4x^{2}-2\times 3x^{2}
Combine 3x^{2} and x^{2} to get 4x^{2}.
24=12x^{2}-2\times 3x^{2}
Multiply 3 and 4 to get 12.
24=12x^{2}-6x^{2}
Multiply 2 and 3 to get 6.
24=6x^{2}
Combine 12x^{2} and -6x^{2} to get 6x^{2}.
6x^{2}=24
Swap sides so that all variable terms are on the left hand side.
6x^{2}-24=0
Subtract 24 from both sides.
x^{2}-4=0
Divide both sides by 6.
\left(x-2\right)\left(x+2\right)=0
Consider x^{2}-4. Rewrite x^{2}-4 as x^{2}-2^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=2 x=-2
To find equation solutions, solve x-2=0 and x+2=0.
3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\sqrt{3}xx\sqrt{3}
Multiply both sides of the equation by 3.
3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3xx
Multiply \sqrt{3} and \sqrt{3} to get 3.
3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Multiply x and x to get x^{2}.
3\times 2^{2}\left(\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Expand \left(2\sqrt{2}\right)^{2}.
3\times 4\left(\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Calculate 2 to the power of 2 and get 4.
3\times 4\times 2=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
The square of \sqrt{2} is 2.
3\times 8=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Multiply 4 and 2 to get 8.
24=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Multiply 3 and 8 to get 24.
24=3\left(\left(\sqrt{3}\right)^{2}x^{2}+x^{2}\right)-2\times 3x^{2}
Expand \left(\sqrt{3}x\right)^{2}.
24=3\left(3x^{2}+x^{2}\right)-2\times 3x^{2}
The square of \sqrt{3} is 3.
24=3\times 4x^{2}-2\times 3x^{2}
Combine 3x^{2} and x^{2} to get 4x^{2}.
24=12x^{2}-2\times 3x^{2}
Multiply 3 and 4 to get 12.
24=12x^{2}-6x^{2}
Multiply 2 and 3 to get 6.
24=6x^{2}
Combine 12x^{2} and -6x^{2} to get 6x^{2}.
6x^{2}=24
Swap sides so that all variable terms are on the left hand side.
x^{2}=\frac{24}{6}
Divide both sides by 6.
x^{2}=4
Divide 24 by 6 to get 4.
x=2 x=-2
Take the square root of both sides of the equation.
3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\sqrt{3}xx\sqrt{3}
Multiply both sides of the equation by 3.
3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3xx
Multiply \sqrt{3} and \sqrt{3} to get 3.
3\times \left(2\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Multiply x and x to get x^{2}.
3\times 2^{2}\left(\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Expand \left(2\sqrt{2}\right)^{2}.
3\times 4\left(\sqrt{2}\right)^{2}=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Calculate 2 to the power of 2 and get 4.
3\times 4\times 2=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
The square of \sqrt{2} is 2.
3\times 8=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Multiply 4 and 2 to get 8.
24=3\left(\left(\sqrt{3}x\right)^{2}+x^{2}\right)-2\times 3x^{2}
Multiply 3 and 8 to get 24.
24=3\left(\left(\sqrt{3}\right)^{2}x^{2}+x^{2}\right)-2\times 3x^{2}
Expand \left(\sqrt{3}x\right)^{2}.
24=3\left(3x^{2}+x^{2}\right)-2\times 3x^{2}
The square of \sqrt{3} is 3.
24=3\times 4x^{2}-2\times 3x^{2}
Combine 3x^{2} and x^{2} to get 4x^{2}.
24=12x^{2}-2\times 3x^{2}
Multiply 3 and 4 to get 12.
24=12x^{2}-6x^{2}
Multiply 2 and 3 to get 6.
24=6x^{2}
Combine 12x^{2} and -6x^{2} to get 6x^{2}.
6x^{2}=24
Swap sides so that all variable terms are on the left hand side.
6x^{2}-24=0
Subtract 24 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 6\left(-24\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 0 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6\left(-24\right)}}{2\times 6}
Square 0.
x=\frac{0±\sqrt{-24\left(-24\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{0±\sqrt{576}}{2\times 6}
Multiply -24 times -24.
x=\frac{0±24}{2\times 6}
Take the square root of 576.
x=\frac{0±24}{12}
Multiply 2 times 6.
x=2
Now solve the equation x=\frac{0±24}{12} when ± is plus. Divide 24 by 12.
x=-2
Now solve the equation x=\frac{0±24}{12} when ± is minus. Divide -24 by 12.
x=2 x=-2
The equation is now solved.