Evaluate
22
Factor
2\times 11
Share
Copied to clipboard
\frac{2\times 2\sqrt{3}+\frac{1}{5}\sqrt{75}-4\sqrt{\frac{1}{3}}}{\frac{1}{2}}\sqrt{3}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{4\sqrt{3}+\frac{1}{5}\sqrt{75}-4\sqrt{\frac{1}{3}}}{\frac{1}{2}}\sqrt{3}
Multiply 2 and 2 to get 4.
\frac{4\sqrt{3}+\frac{1}{5}\times 5\sqrt{3}-4\sqrt{\frac{1}{3}}}{\frac{1}{2}}\sqrt{3}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\frac{4\sqrt{3}+\sqrt{3}-4\sqrt{\frac{1}{3}}}{\frac{1}{2}}\sqrt{3}
Cancel out 5 and 5.
\frac{5\sqrt{3}-4\sqrt{\frac{1}{3}}}{\frac{1}{2}}\sqrt{3}
Combine 4\sqrt{3} and \sqrt{3} to get 5\sqrt{3}.
\frac{5\sqrt{3}-4\times \frac{\sqrt{1}}{\sqrt{3}}}{\frac{1}{2}}\sqrt{3}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
\frac{5\sqrt{3}-4\times \frac{1}{\sqrt{3}}}{\frac{1}{2}}\sqrt{3}
Calculate the square root of 1 and get 1.
\frac{5\sqrt{3}-4\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\frac{1}{2}}\sqrt{3}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{5\sqrt{3}-4\times \frac{\sqrt{3}}{3}}{\frac{1}{2}}\sqrt{3}
The square of \sqrt{3} is 3.
\frac{5\sqrt{3}+\frac{-4\sqrt{3}}{3}}{\frac{1}{2}}\sqrt{3}
Express -4\times \frac{\sqrt{3}}{3} as a single fraction.
\frac{\frac{3\times 5\sqrt{3}}{3}+\frac{-4\sqrt{3}}{3}}{\frac{1}{2}}\sqrt{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 5\sqrt{3} times \frac{3}{3}.
\frac{\frac{3\times 5\sqrt{3}-4\sqrt{3}}{3}}{\frac{1}{2}}\sqrt{3}
Since \frac{3\times 5\sqrt{3}}{3} and \frac{-4\sqrt{3}}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{15\sqrt{3}-4\sqrt{3}}{3}}{\frac{1}{2}}\sqrt{3}
Do the multiplications in 3\times 5\sqrt{3}-4\sqrt{3}.
\frac{\frac{11\sqrt{3}}{3}}{\frac{1}{2}}\sqrt{3}
Do the calculations in 15\sqrt{3}-4\sqrt{3}.
\frac{11\sqrt{3}\times 2}{3}\sqrt{3}
Divide \frac{11\sqrt{3}}{3} by \frac{1}{2} by multiplying \frac{11\sqrt{3}}{3} by the reciprocal of \frac{1}{2}.
\frac{22\sqrt{3}}{3}\sqrt{3}
Multiply 11 and 2 to get 22.
\frac{22\sqrt{3}\sqrt{3}}{3}
Express \frac{22\sqrt{3}}{3}\sqrt{3} as a single fraction.
\frac{22\times 3}{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
22
Cancel out 3 and 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}