Evaluate
\frac{7}{3}\approx 2.333333333
Factor
\frac{7}{3} = 2\frac{1}{3} = 2.3333333333333335
Share
Copied to clipboard
\frac{24+1}{12}-\frac{1\times 2+1}{2}+\frac{1\times 4+3}{4}
Multiply 2 and 12 to get 24.
\frac{25}{12}-\frac{1\times 2+1}{2}+\frac{1\times 4+3}{4}
Add 24 and 1 to get 25.
\frac{25}{12}-\frac{2+1}{2}+\frac{1\times 4+3}{4}
Multiply 1 and 2 to get 2.
\frac{25}{12}-\frac{3}{2}+\frac{1\times 4+3}{4}
Add 2 and 1 to get 3.
\frac{25}{12}-\frac{18}{12}+\frac{1\times 4+3}{4}
Least common multiple of 12 and 2 is 12. Convert \frac{25}{12} and \frac{3}{2} to fractions with denominator 12.
\frac{25-18}{12}+\frac{1\times 4+3}{4}
Since \frac{25}{12} and \frac{18}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{12}+\frac{1\times 4+3}{4}
Subtract 18 from 25 to get 7.
\frac{7}{12}+\frac{4+3}{4}
Multiply 1 and 4 to get 4.
\frac{7}{12}+\frac{7}{4}
Add 4 and 3 to get 7.
\frac{7}{12}+\frac{21}{12}
Least common multiple of 12 and 4 is 12. Convert \frac{7}{12} and \frac{7}{4} to fractions with denominator 12.
\frac{7+21}{12}
Since \frac{7}{12} and \frac{21}{12} have the same denominator, add them by adding their numerators.
\frac{28}{12}
Add 7 and 21 to get 28.
\frac{7}{3}
Reduce the fraction \frac{28}{12} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}