Solve for x
x=-\frac{65}{105350-\alpha _{3440}}
\alpha _{3440}\neq 105350
Solve for α_3440
\alpha _{3440}=105350+\frac{65}{x}
x\neq 0
Graph
Share
Copied to clipboard
2\alpha _{3440}-\frac{130}{x}=6020\times 35
Multiply both sides by 35.
2\alpha _{3440}x-130=6020\times 35x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
2\alpha _{3440}x-130=210700x
Multiply 6020 and 35 to get 210700.
2\alpha _{3440}x-130-210700x=0
Subtract 210700x from both sides.
2\alpha _{3440}x-210700x=130
Add 130 to both sides. Anything plus zero gives itself.
\left(2\alpha _{3440}-210700\right)x=130
Combine all terms containing x.
\frac{\left(2\alpha _{3440}-210700\right)x}{2\alpha _{3440}-210700}=\frac{130}{2\alpha _{3440}-210700}
Divide both sides by 2\alpha _{3440}-210700.
x=\frac{130}{2\alpha _{3440}-210700}
Dividing by 2\alpha _{3440}-210700 undoes the multiplication by 2\alpha _{3440}-210700.
x=\frac{65}{\alpha _{3440}-105350}
Divide 130 by 2\alpha _{3440}-210700.
x=\frac{65}{\alpha _{3440}-105350}\text{, }x\neq 0
Variable x cannot be equal to 0.
2\alpha _{3440}-\frac{130}{x}=6020\times 35
Multiply both sides by 35.
2\alpha _{3440}x-130=6020\times 35x
Multiply both sides of the equation by x.
2\alpha _{3440}x-130=210700x
Multiply 6020 and 35 to get 210700.
2\alpha _{3440}x=210700x+130
Add 130 to both sides.
2x\alpha _{3440}=210700x+130
The equation is in standard form.
\frac{2x\alpha _{3440}}{2x}=\frac{210700x+130}{2x}
Divide both sides by 2x.
\alpha _{3440}=\frac{210700x+130}{2x}
Dividing by 2x undoes the multiplication by 2x.
\alpha _{3440}=105350+\frac{65}{x}
Divide 210700x+130 by 2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}