Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. p
Tick mark Image

Share

\frac{\left(2^{4}\times 4\right)^{\frac{1}{2}}}{p^{1}}
To raise a power to another power, multiply the exponents. Multiply \frac{1}{3} and 3 to get 1.
\frac{\left(16\times 4\right)^{\frac{1}{2}}}{p^{1}}
Calculate 2 to the power of 4 and get 16.
\frac{64^{\frac{1}{2}}}{p^{1}}
Multiply 16 and 4 to get 64.
\frac{8}{p^{1}}
Calculate 64 to the power of \frac{1}{2} and get 8.
\frac{8}{p}
Calculate p to the power of 1 and get p.
\frac{\mathrm{d}}{\mathrm{d}p}(\frac{\left(2^{4}\times 4\right)^{\frac{1}{2}}}{p^{1}})
To raise a power to another power, multiply the exponents. Multiply \frac{1}{3} and 3 to get 1.
\frac{\mathrm{d}}{\mathrm{d}p}(\frac{\left(16\times 4\right)^{\frac{1}{2}}}{p^{1}})
Calculate 2 to the power of 4 and get 16.
\frac{\mathrm{d}}{\mathrm{d}p}(\frac{64^{\frac{1}{2}}}{p^{1}})
Multiply 16 and 4 to get 64.
\frac{\mathrm{d}}{\mathrm{d}p}(\frac{8}{p^{1}})
Calculate 64 to the power of \frac{1}{2} and get 8.
\frac{\mathrm{d}}{\mathrm{d}p}(\frac{8}{p})
Calculate p to the power of 1 and get p.
-8p^{-1-1}
The derivative of ax^{n} is nax^{n-1}.
-8p^{-2}
Subtract 1 from -1.