Evaluate
\frac{863}{27}\approx 31.962962963
Factor
\frac{863}{3 ^ {3}} = 31\frac{26}{27} = 31.962962962962962
Share
Copied to clipboard
\frac{\left(2^{5}\right)^{3}}{2^{9}\times 2}-\frac{\left(\left(3^{3}\right)^{2}\right)^{2}}{3^{15}}
To multiply powers of the same base, add their exponents. Add 3 and 2 to get 5.
\frac{2^{15}}{2^{9}\times 2}-\frac{\left(\left(3^{3}\right)^{2}\right)^{2}}{3^{15}}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{2^{15}}{2^{10}}-\frac{\left(\left(3^{3}\right)^{2}\right)^{2}}{3^{15}}
To multiply powers of the same base, add their exponents. Add 9 and 1 to get 10.
2^{5}-\frac{\left(\left(3^{3}\right)^{2}\right)^{2}}{3^{15}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 10 from 15 to get 5.
2^{5}-\frac{\left(3^{6}\right)^{2}}{3^{15}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
2^{5}-\frac{3^{12}}{3^{15}}
To raise a power to another power, multiply the exponents. Multiply 6 and 2 to get 12.
2^{5}-\frac{1}{3^{3}}
Rewrite 3^{15} as 3^{12}\times 3^{3}. Cancel out 3^{12} in both numerator and denominator.
32-\frac{1}{3^{3}}
Calculate 2 to the power of 5 and get 32.
32-\frac{1}{27}
Calculate 3 to the power of 3 and get 27.
\frac{863}{27}
Subtract \frac{1}{27} from 32 to get \frac{863}{27}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}