Skip to main content
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

\left(2^{\frac{4}{3}}\right)^{3}+3\times \left(2^{\frac{4}{3}}\right)^{2}\sqrt[3]{\frac{1}{2}}+3\times 2^{\frac{4}{3}}\left(\sqrt[3]{\frac{1}{2}}\right)^{2}+\left(\sqrt[3]{\frac{1}{2}}\right)^{3}=a\left(2^{\frac{4}{3}}+\sqrt[3]{\frac{1}{2}}\right)+b
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(2^{\frac{4}{3}}+\sqrt[3]{\frac{1}{2}}\right)^{3}.
2^{4}+3\times \left(2^{\frac{4}{3}}\right)^{2}\sqrt[3]{\frac{1}{2}}+3\times 2^{\frac{4}{3}}\left(\sqrt[3]{\frac{1}{2}}\right)^{2}+\left(\sqrt[3]{\frac{1}{2}}\right)^{3}=a\left(2^{\frac{4}{3}}+\sqrt[3]{\frac{1}{2}}\right)+b
To raise a power to another power, multiply the exponents. Multiply \frac{4}{3} and 3 to get 4.
2^{4}+3\times 2^{\frac{8}{3}}\sqrt[3]{\frac{1}{2}}+3\times 2^{\frac{4}{3}}\left(\sqrt[3]{\frac{1}{2}}\right)^{2}+\left(\sqrt[3]{\frac{1}{2}}\right)^{3}=a\left(2^{\frac{4}{3}}+\sqrt[3]{\frac{1}{2}}\right)+b
To raise a power to another power, multiply the exponents. Multiply \frac{4}{3} and 2 to get \frac{8}{3}.
16+3\times 2^{\frac{8}{3}}\sqrt[3]{\frac{1}{2}}+3\times 2^{\frac{4}{3}}\left(\sqrt[3]{\frac{1}{2}}\right)^{2}+\left(\sqrt[3]{\frac{1}{2}}\right)^{3}=a\left(2^{\frac{4}{3}}+\sqrt[3]{\frac{1}{2}}\right)+b
Calculate 2 to the power of 4 and get 16.
16+3\times 2^{\frac{8}{3}}\sqrt[3]{\frac{1}{2}}+3\times 2^{\frac{4}{3}}\left(\sqrt[3]{\frac{1}{2}}\right)^{2}+\left(\sqrt[3]{\frac{1}{2}}\right)^{3}=a\times 2^{\frac{4}{3}}+a\sqrt[3]{\frac{1}{2}}+b
Use the distributive property to multiply a by 2^{\frac{4}{3}}+\sqrt[3]{\frac{1}{2}}.
a\times 2^{\frac{4}{3}}+a\sqrt[3]{\frac{1}{2}}+b=16+3\times 2^{\frac{8}{3}}\sqrt[3]{\frac{1}{2}}+3\times 2^{\frac{4}{3}}\left(\sqrt[3]{\frac{1}{2}}\right)^{2}+\left(\sqrt[3]{\frac{1}{2}}\right)^{3}
Swap sides so that all variable terms are on the left hand side.
a\times 2^{\frac{4}{3}}+a\sqrt[3]{\frac{1}{2}}=16+3\times 2^{\frac{8}{3}}\sqrt[3]{\frac{1}{2}}+3\times 2^{\frac{4}{3}}\left(\sqrt[3]{\frac{1}{2}}\right)^{2}+\left(\sqrt[3]{\frac{1}{2}}\right)^{3}-b
Subtract b from both sides.
\left(2^{\frac{4}{3}}+\sqrt[3]{\frac{1}{2}}\right)a=16+3\times 2^{\frac{8}{3}}\sqrt[3]{\frac{1}{2}}+3\times 2^{\frac{4}{3}}\left(\sqrt[3]{\frac{1}{2}}\right)^{2}+\left(\sqrt[3]{\frac{1}{2}}\right)^{3}-b
Combine all terms containing a.
\left(2\sqrt[3]{2}+\sqrt[3]{\frac{1}{2}}\right)a=-b+6\sqrt[3]{2}\left(\sqrt[3]{\frac{1}{2}}\right)^{2}+12\times 2^{\frac{2}{3}}\sqrt[3]{\frac{1}{2}}+\left(\sqrt[3]{\frac{1}{2}}\right)^{3}+16
The equation is in standard form.
\frac{\left(2\sqrt[3]{2}+\sqrt[3]{\frac{1}{2}}\right)a}{2\sqrt[3]{2}+\sqrt[3]{\frac{1}{2}}}=\frac{-b+\frac{6}{\sqrt[3]{2}}+12\sqrt[3]{2}+\frac{33}{2}}{2\sqrt[3]{2}+\sqrt[3]{\frac{1}{2}}}
Divide both sides by 2\times 2^{\frac{1}{3}}+\sqrt[3]{\frac{1}{2}}.
a=\frac{-b+\frac{6}{\sqrt[3]{2}}+12\sqrt[3]{2}+\frac{33}{2}}{2\sqrt[3]{2}+\sqrt[3]{\frac{1}{2}}}
Dividing by 2\times 2^{\frac{1}{3}}+\sqrt[3]{\frac{1}{2}} undoes the multiplication by 2\times 2^{\frac{1}{3}}+\sqrt[3]{\frac{1}{2}}.
a=\frac{\left(\frac{1}{2^{\frac{2}{3}}}+4\times 2^{\frac{2}{3}}-2\right)\left(-2\sqrt[3]{2}b+24\times 2^{\frac{2}{3}}+33\sqrt[3]{2}+12\right)}{33\sqrt[3]{2}}
Divide \frac{33}{2}+\frac{6}{\sqrt[3]{2}}+12\sqrt[3]{2}-b by 2\times 2^{\frac{1}{3}}+\sqrt[3]{\frac{1}{2}}.