Evaluate
\frac{864}{78125}=0.0110592
Factor
\frac{2 ^ {5} \cdot 3 ^ {3}}{5 ^ {7}} = 0.0110592
Share
Copied to clipboard
\frac{\left(\frac{2}{5}\right)^{5}}{\frac{3}{9}}\times \frac{9}{25}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{\frac{32}{3125}}{\frac{3}{9}}\times \frac{9}{25}
Calculate \frac{2}{5} to the power of 5 and get \frac{32}{3125}.
\frac{\frac{32}{3125}}{\frac{1}{3}}\times \frac{9}{25}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{32}{3125}\times 3\times \frac{9}{25}
Divide \frac{32}{3125} by \frac{1}{3} by multiplying \frac{32}{3125} by the reciprocal of \frac{1}{3}.
\frac{32\times 3}{3125}\times \frac{9}{25}
Express \frac{32}{3125}\times 3 as a single fraction.
\frac{96}{3125}\times \frac{9}{25}
Multiply 32 and 3 to get 96.
\frac{96\times 9}{3125\times 25}
Multiply \frac{96}{3125} times \frac{9}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{864}{78125}
Do the multiplications in the fraction \frac{96\times 9}{3125\times 25}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}