Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(-x^{2}\right)+8x+x\left(-x^{2}\right)+4x^{2}-3=\left(3-x^{2}+4x\right)\left(x-1\right)
Use the distributive property to multiply 2+x by -x^{2}+4x.
2\left(-x^{2}\right)+8x+x\left(-x^{2}\right)+4x^{2}-3=-x-3-x^{3}+5x^{2}
Use the distributive property to multiply 3-x^{2}+4x by x-1 and combine like terms.
2\left(-x^{2}\right)+8x+x\left(-x^{2}\right)+4x^{2}-3+x=-3-x^{3}+5x^{2}
Add x to both sides.
2\left(-x^{2}\right)+9x+x\left(-x^{2}\right)+4x^{2}-3=-3-x^{3}+5x^{2}
Combine 8x and x to get 9x.
2\left(-x^{2}\right)+9x+x\left(-x^{2}\right)+4x^{2}-3-\left(-3\right)=-x^{3}+5x^{2}
Subtract -3 from both sides.
2\left(-x^{2}\right)+9x+x\left(-x^{2}\right)+4x^{2}-3+3=-x^{3}+5x^{2}
The opposite of -3 is 3.
2\left(-x^{2}\right)+9x+x\left(-x^{2}\right)+4x^{2}-3+3+x^{3}=5x^{2}
Add x^{3} to both sides.
2\left(-x^{2}\right)+9x+x\left(-x^{2}\right)+4x^{2}+x^{3}=5x^{2}
Add -3 and 3 to get 0.
2\left(-x^{2}\right)+9x+x\left(-x^{2}\right)+4x^{2}+x^{3}-5x^{2}=0
Subtract 5x^{2} from both sides.
2\left(-x^{2}\right)+9x+x\left(-x^{2}\right)-x^{2}+x^{3}=0
Combine 4x^{2} and -5x^{2} to get -x^{2}.
-2x^{2}+9x+x\left(-1\right)x^{2}-x^{2}+x^{3}=0
Multiply 2 and -1 to get -2.
-2x^{2}+9x+x^{3}\left(-1\right)-x^{2}+x^{3}=0
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
-3x^{2}+9x+x^{3}\left(-1\right)+x^{3}=0
Combine -2x^{2} and -x^{2} to get -3x^{2}.
-3x^{2}+9x=0
Combine x^{3}\left(-1\right) and x^{3} to get 0.
x\left(-3x+9\right)=0
Factor out x.
x=0 x=3
To find equation solutions, solve x=0 and -3x+9=0.
2\left(-x^{2}\right)+8x+x\left(-x^{2}\right)+4x^{2}-3=\left(3-x^{2}+4x\right)\left(x-1\right)
Use the distributive property to multiply 2+x by -x^{2}+4x.
2\left(-x^{2}\right)+8x+x\left(-x^{2}\right)+4x^{2}-3=-x-3-x^{3}+5x^{2}
Use the distributive property to multiply 3-x^{2}+4x by x-1 and combine like terms.
2\left(-x^{2}\right)+8x+x\left(-x^{2}\right)+4x^{2}-3+x=-3-x^{3}+5x^{2}
Add x to both sides.
2\left(-x^{2}\right)+9x+x\left(-x^{2}\right)+4x^{2}-3=-3-x^{3}+5x^{2}
Combine 8x and x to get 9x.
2\left(-x^{2}\right)+9x+x\left(-x^{2}\right)+4x^{2}-3-\left(-3\right)=-x^{3}+5x^{2}
Subtract -3 from both sides.
2\left(-x^{2}\right)+9x+x\left(-x^{2}\right)+4x^{2}-3+3=-x^{3}+5x^{2}
The opposite of -3 is 3.
2\left(-x^{2}\right)+9x+x\left(-x^{2}\right)+4x^{2}-3+3+x^{3}=5x^{2}
Add x^{3} to both sides.
2\left(-x^{2}\right)+9x+x\left(-x^{2}\right)+4x^{2}+x^{3}=5x^{2}
Add -3 and 3 to get 0.
2\left(-x^{2}\right)+9x+x\left(-x^{2}\right)+4x^{2}+x^{3}-5x^{2}=0
Subtract 5x^{2} from both sides.
2\left(-x^{2}\right)+9x+x\left(-x^{2}\right)-x^{2}+x^{3}=0
Combine 4x^{2} and -5x^{2} to get -x^{2}.
-2x^{2}+9x+x\left(-1\right)x^{2}-x^{2}+x^{3}=0
Multiply 2 and -1 to get -2.
-2x^{2}+9x+x^{3}\left(-1\right)-x^{2}+x^{3}=0
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
-3x^{2}+9x+x^{3}\left(-1\right)+x^{3}=0
Combine -2x^{2} and -x^{2} to get -3x^{2}.
-3x^{2}+9x=0
Combine x^{3}\left(-1\right) and x^{3} to get 0.
x=\frac{-9±\sqrt{9^{2}}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 9 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±9}{2\left(-3\right)}
Take the square root of 9^{2}.
x=\frac{-9±9}{-6}
Multiply 2 times -3.
x=\frac{0}{-6}
Now solve the equation x=\frac{-9±9}{-6} when ± is plus. Add -9 to 9.
x=0
Divide 0 by -6.
x=-\frac{18}{-6}
Now solve the equation x=\frac{-9±9}{-6} when ± is minus. Subtract 9 from -9.
x=3
Divide -18 by -6.
x=0 x=3
The equation is now solved.
2\left(-x^{2}\right)+8x+x\left(-x^{2}\right)+4x^{2}-3=\left(3-x^{2}+4x\right)\left(x-1\right)
Use the distributive property to multiply 2+x by -x^{2}+4x.
2\left(-x^{2}\right)+8x+x\left(-x^{2}\right)+4x^{2}-3=-x-3-x^{3}+5x^{2}
Use the distributive property to multiply 3-x^{2}+4x by x-1 and combine like terms.
2\left(-x^{2}\right)+8x+x\left(-x^{2}\right)+4x^{2}-3+x=-3-x^{3}+5x^{2}
Add x to both sides.
2\left(-x^{2}\right)+9x+x\left(-x^{2}\right)+4x^{2}-3=-3-x^{3}+5x^{2}
Combine 8x and x to get 9x.
2\left(-x^{2}\right)+9x+x\left(-x^{2}\right)+4x^{2}-3+x^{3}=-3+5x^{2}
Add x^{3} to both sides.
2\left(-x^{2}\right)+9x+x\left(-x^{2}\right)+4x^{2}-3+x^{3}-5x^{2}=-3
Subtract 5x^{2} from both sides.
2\left(-x^{2}\right)+9x+x\left(-x^{2}\right)-x^{2}-3+x^{3}=-3
Combine 4x^{2} and -5x^{2} to get -x^{2}.
2\left(-x^{2}\right)+9x+x\left(-x^{2}\right)-x^{2}+x^{3}=-3+3
Add 3 to both sides.
2\left(-x^{2}\right)+9x+x\left(-x^{2}\right)-x^{2}+x^{3}=0
Add -3 and 3 to get 0.
-2x^{2}+9x+x\left(-1\right)x^{2}-x^{2}+x^{3}=0
Multiply 2 and -1 to get -2.
-2x^{2}+9x+x^{3}\left(-1\right)-x^{2}+x^{3}=0
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
-3x^{2}+9x+x^{3}\left(-1\right)+x^{3}=0
Combine -2x^{2} and -x^{2} to get -3x^{2}.
-3x^{2}+9x=0
Combine x^{3}\left(-1\right) and x^{3} to get 0.
\frac{-3x^{2}+9x}{-3}=\frac{0}{-3}
Divide both sides by -3.
x^{2}+\frac{9}{-3}x=\frac{0}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-3x=\frac{0}{-3}
Divide 9 by -3.
x^{2}-3x=0
Divide 0 by -3.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{3}{2}\right)^{2}=\frac{9}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{3}{2} x-\frac{3}{2}=-\frac{3}{2}
Simplify.
x=3 x=0
Add \frac{3}{2} to both sides of the equation.