Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

z=\frac{1+i}{2+i}
Divide both sides by 2+i.
z=\frac{\left(1+i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}
Multiply both numerator and denominator of \frac{1+i}{2+i} by the complex conjugate of the denominator, 2-i.
z=\frac{\left(1+i\right)\left(2-i\right)}{2^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(1+i\right)\left(2-i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{1\times 2+1\left(-i\right)+2i-i^{2}}{5}
Multiply complex numbers 1+i and 2-i like you multiply binomials.
z=\frac{1\times 2+1\left(-i\right)+2i-\left(-1\right)}{5}
By definition, i^{2} is -1.
z=\frac{2-i+2i+1}{5}
Do the multiplications in 1\times 2+1\left(-i\right)+2i-\left(-1\right).
z=\frac{2+1+\left(-1+2\right)i}{5}
Combine the real and imaginary parts in 2-i+2i+1.
z=\frac{3+i}{5}
Do the additions in 2+1+\left(-1+2\right)i.
z=\frac{3}{5}+\frac{1}{5}i
Divide 3+i by 5 to get \frac{3}{5}+\frac{1}{5}i.