Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

\left(2+i\right)z-\left(\frac{3}{2}-i\right)z=4+3i-\left(2-5i\right)z
Divide 3-2i by 2 to get \frac{3}{2}-i.
\left(\frac{1}{2}+2i\right)z=4+3i-\left(2-5i\right)z
Combine \left(2+i\right)z and \left(-\frac{3}{2}+i\right)z to get \left(\frac{1}{2}+2i\right)z.
\left(\frac{1}{2}+2i\right)z+\left(2-5i\right)z=4+3i
Add \left(2-5i\right)z to both sides.
\left(\frac{5}{2}-3i\right)z=4+3i
Combine \left(\frac{1}{2}+2i\right)z and \left(2-5i\right)z to get \left(\frac{5}{2}-3i\right)z.
z=\frac{4+3i}{\frac{5}{2}-3i}
Divide both sides by \frac{5}{2}-3i.
z=\frac{\left(4+3i\right)\left(\frac{5}{2}+3i\right)}{\left(\frac{5}{2}-3i\right)\left(\frac{5}{2}+3i\right)}
Multiply both numerator and denominator of \frac{4+3i}{\frac{5}{2}-3i} by the complex conjugate of the denominator, \frac{5}{2}+3i.
z=\frac{\left(4+3i\right)\left(\frac{5}{2}+3i\right)}{\left(\frac{5}{2}\right)^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(4+3i\right)\left(\frac{5}{2}+3i\right)}{\frac{61}{4}}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{4\times \frac{5}{2}+4\times \left(3i\right)+3i\times \frac{5}{2}+3\times 3i^{2}}{\frac{61}{4}}
Multiply complex numbers 4+3i and \frac{5}{2}+3i like you multiply binomials.
z=\frac{4\times \frac{5}{2}+4\times \left(3i\right)+3i\times \frac{5}{2}+3\times 3\left(-1\right)}{\frac{61}{4}}
By definition, i^{2} is -1.
z=\frac{10+12i+\frac{15}{2}i-9}{\frac{61}{4}}
Do the multiplications in 4\times \frac{5}{2}+4\times \left(3i\right)+3i\times \frac{5}{2}+3\times 3\left(-1\right).
z=\frac{10-9+\left(12+\frac{15}{2}\right)i}{\frac{61}{4}}
Combine the real and imaginary parts in 10+12i+\frac{15}{2}i-9.
z=\frac{1+\frac{39}{2}i}{\frac{61}{4}}
Do the additions in 10-9+\left(12+\frac{15}{2}\right)i.
z=\frac{4}{61}+\frac{78}{61}i
Divide 1+\frac{39}{2}i by \frac{61}{4} to get \frac{4}{61}+\frac{78}{61}i.