Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

\left(2+5i\right)x=i+\left(1+i\right)y
Add \left(1+i\right)y to both sides.
\left(2+5i\right)x=\left(1+i\right)y+i
The equation is in standard form.
\frac{\left(2+5i\right)x}{2+5i}=\frac{\left(1+i\right)y+i}{2+5i}
Divide both sides by 2+5i.
x=\frac{\left(1+i\right)y+i}{2+5i}
Dividing by 2+5i undoes the multiplication by 2+5i.
x=\left(\frac{7}{29}-\frac{3}{29}i\right)y+\left(\frac{5}{29}+\frac{2}{29}i\right)
Divide i+\left(1+i\right)y by 2+5i.
\left(2+5i\right)x+\left(-1-i\right)y=i
Multiply -1 and 1+i to get -1-i.
\left(-1-i\right)y=i-\left(2+5i\right)x
Subtract \left(2+5i\right)x from both sides.
\left(-1-i\right)y=\left(-2-5i\right)x+i
The equation is in standard form.
\frac{\left(-1-i\right)y}{-1-i}=\frac{\left(-2-5i\right)x+i}{-1-i}
Divide both sides by -1-i.
y=\frac{\left(-2-5i\right)x+i}{-1-i}
Dividing by -1-i undoes the multiplication by -1-i.
y=\left(\frac{7}{2}+\frac{3}{2}i\right)x+\left(-\frac{1}{2}-\frac{1}{2}i\right)
Divide i+\left(-2-5i\right)x by -1-i.