Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

2\left(-1\right)+2\left(-i\right)+3i\left(-1\right)+3\left(-1\right)i^{2}+\frac{3}{i}
Multiply complex numbers 2+3i and -1-i like you multiply binomials.
2\left(-1\right)+2\left(-i\right)+3i\left(-1\right)+3\left(-1\right)\left(-1\right)+\frac{3}{i}
By definition, i^{2} is -1.
-2-2i-3i+3+\frac{3}{i}
Do the multiplications in 2\left(-1\right)+2\left(-i\right)+3i\left(-1\right)+3\left(-1\right)\left(-1\right).
-2+3+\left(-2-3\right)i+\frac{3}{i}
Combine the real and imaginary parts in -2-2i-3i+3.
1-5i+\frac{3}{i}
Do the additions in -2+3+\left(-2-3\right)i.
1-5i+\frac{3i}{1i^{2}}
Multiply both numerator and denominator of \frac{3}{i} by imaginary unit i.
1-5i+\frac{3i}{-1}
By definition, i^{2} is -1. Calculate the denominator.
1-5i-3i
Divide 3i by -1 to get -3i.
1+\left(-5-3\right)i
Combine the real and imaginary parts.
1-8i
Add -5 to -3.
Re(2\left(-1\right)+2\left(-i\right)+3i\left(-1\right)+3\left(-1\right)i^{2}+\frac{3}{i})
Multiply complex numbers 2+3i and -1-i like you multiply binomials.
Re(2\left(-1\right)+2\left(-i\right)+3i\left(-1\right)+3\left(-1\right)\left(-1\right)+\frac{3}{i})
By definition, i^{2} is -1.
Re(-2-2i-3i+3+\frac{3}{i})
Do the multiplications in 2\left(-1\right)+2\left(-i\right)+3i\left(-1\right)+3\left(-1\right)\left(-1\right).
Re(-2+3+\left(-2-3\right)i+\frac{3}{i})
Combine the real and imaginary parts in -2-2i-3i+3.
Re(1-5i+\frac{3}{i})
Do the additions in -2+3+\left(-2-3\right)i.
Re(1-5i+\frac{3i}{1i^{2}})
Multiply both numerator and denominator of \frac{3}{i} by imaginary unit i.
Re(1-5i+\frac{3i}{-1})
By definition, i^{2} is -1. Calculate the denominator.
Re(1-5i-3i)
Divide 3i by -1 to get -3i.
Re(1+\left(-5-3\right)i)
Combine the real and imaginary parts in 1-5i-3i.
Re(1-8i)
Add -5 to -3.
1
The real part of 1-8i is 1.