Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2^{2}-\left(\sqrt{5}\right)^{2}+\sqrt{5}+1^{2}-\sqrt{20}
Consider \left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4-\left(\sqrt{5}\right)^{2}+\sqrt{5}+1^{2}-\sqrt{20}
Calculate 2 to the power of 2 and get 4.
4-5+\sqrt{5}+1^{2}-\sqrt{20}
The square of \sqrt{5} is 5.
-1+\sqrt{5}+1^{2}-\sqrt{20}
Subtract 5 from 4 to get -1.
-1+\sqrt{5}+1-\sqrt{20}
Calculate 1 to the power of 2 and get 1.
\sqrt{5}-\sqrt{20}
Add -1 and 1 to get 0.
\sqrt{5}-2\sqrt{5}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
-\sqrt{5}
Combine \sqrt{5} and -2\sqrt{5} to get -\sqrt{5}.