Evaluate
20
Factor
2^{2}\times 5
Share
Copied to clipboard
\left(2+\sqrt{5}+\frac{2-\sqrt{5}}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\right)^{2}
Rationalize the denominator of \frac{1}{2+\sqrt{5}} by multiplying numerator and denominator by 2-\sqrt{5}.
\left(2+\sqrt{5}+\frac{2-\sqrt{5}}{2^{2}-\left(\sqrt{5}\right)^{2}}\right)^{2}
Consider \left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(2+\sqrt{5}+\frac{2-\sqrt{5}}{4-5}\right)^{2}
Square 2. Square \sqrt{5}.
\left(2+\sqrt{5}+\frac{2-\sqrt{5}}{-1}\right)^{2}
Subtract 5 from 4 to get -1.
\left(2+\sqrt{5}-2+\sqrt{5}\right)^{2}
Anything divided by -1 gives its opposite. To find the opposite of 2-\sqrt{5}, find the opposite of each term.
\left(\sqrt{5}+\sqrt{5}\right)^{2}
Subtract 2 from 2 to get 0.
\left(2\sqrt{5}\right)^{2}
Combine \sqrt{5} and \sqrt{5} to get 2\sqrt{5}.
2^{2}\left(\sqrt{5}\right)^{2}
Expand \left(2\sqrt{5}\right)^{2}.
4\left(\sqrt{5}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\times 5
The square of \sqrt{5} is 5.
20
Multiply 4 and 5 to get 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}