Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x+\sqrt{3}x=\frac{x}{2-\sqrt{3}}
Use the distributive property to multiply 2+\sqrt{3} by x.
2x+\sqrt{3}x=\frac{x\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}
Rationalize the denominator of \frac{x}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
2x+\sqrt{3}x=\frac{x\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2x+\sqrt{3}x=\frac{x\left(2+\sqrt{3}\right)}{4-3}
Square 2. Square \sqrt{3}.
2x+\sqrt{3}x=\frac{x\left(2+\sqrt{3}\right)}{1}
Subtract 3 from 4 to get 1.
2x+\sqrt{3}x=x\left(2+\sqrt{3}\right)
Anything divided by one gives itself.
2x+\sqrt{3}x=2x+x\sqrt{3}
Use the distributive property to multiply x by 2+\sqrt{3}.
2x+\sqrt{3}x-2x=x\sqrt{3}
Subtract 2x from both sides.
\sqrt{3}x=x\sqrt{3}
Combine 2x and -2x to get 0.
\sqrt{3}x-x\sqrt{3}=0
Subtract x\sqrt{3} from both sides.
0=0
Combine \sqrt{3}x and -x\sqrt{3} to get 0.
\text{true}
Compare 0 and 0.
x\in \mathrm{C}
This is true for any x.
2x+\sqrt{3}x=\frac{x}{2-\sqrt{3}}
Use the distributive property to multiply 2+\sqrt{3} by x.
2x+\sqrt{3}x=\frac{x\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}
Rationalize the denominator of \frac{x}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
2x+\sqrt{3}x=\frac{x\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2x+\sqrt{3}x=\frac{x\left(2+\sqrt{3}\right)}{4-3}
Square 2. Square \sqrt{3}.
2x+\sqrt{3}x=\frac{x\left(2+\sqrt{3}\right)}{1}
Subtract 3 from 4 to get 1.
2x+\sqrt{3}x=x\left(2+\sqrt{3}\right)
Anything divided by one gives itself.
2x+\sqrt{3}x=2x+x\sqrt{3}
Use the distributive property to multiply x by 2+\sqrt{3}.
2x+\sqrt{3}x-2x=x\sqrt{3}
Subtract 2x from both sides.
\sqrt{3}x=x\sqrt{3}
Combine 2x and -2x to get 0.
\sqrt{3}x-x\sqrt{3}=0
Subtract x\sqrt{3} from both sides.
0=0
Combine \sqrt{3}x and -x\sqrt{3} to get 0.
\text{true}
Compare 0 and 0.
x\in \mathrm{R}
This is true for any x.