Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for b
Tick mark Image
Graph

Similar Problems from Web Search

Share

4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}-\left(2\sqrt{b}-x\right)^{2}=16-x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+3-\left(2\sqrt{b}-x\right)^{2}=16-x^{2}
The square of \sqrt{3} is 3.
7+4\sqrt{3}-\left(2\sqrt{b}-x\right)^{2}=16-x^{2}
Add 4 and 3 to get 7.
7+4\sqrt{3}-\left(4\left(\sqrt{b}\right)^{2}-4\sqrt{b}x+x^{2}\right)=16-x^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2\sqrt{b}-x\right)^{2}.
7+4\sqrt{3}-\left(4b-4\sqrt{b}x+x^{2}\right)=16-x^{2}
Calculate \sqrt{b} to the power of 2 and get b.
7+4\sqrt{3}-4b+4\sqrt{b}x-x^{2}=16-x^{2}
To find the opposite of 4b-4\sqrt{b}x+x^{2}, find the opposite of each term.
7+4\sqrt{3}-4b+4\sqrt{b}x-x^{2}+x^{2}=16
Add x^{2} to both sides.
7+4\sqrt{3}-4b+4\sqrt{b}x=16
Combine -x^{2} and x^{2} to get 0.
4\sqrt{3}-4b+4\sqrt{b}x=16-7
Subtract 7 from both sides.
4\sqrt{3}-4b+4\sqrt{b}x=9
Subtract 7 from 16 to get 9.
-4b+4\sqrt{b}x=9-4\sqrt{3}
Subtract 4\sqrt{3} from both sides.
4\sqrt{b}x=9-4\sqrt{3}+4b
Add 4b to both sides.
4\sqrt{b}x=4b+9-4\sqrt{3}
The equation is in standard form.
\frac{4\sqrt{b}x}{4\sqrt{b}}=\frac{4b+9-4\sqrt{3}}{4\sqrt{b}}
Divide both sides by 4\sqrt{b}.
x=\frac{4b+9-4\sqrt{3}}{4\sqrt{b}}
Dividing by 4\sqrt{b} undoes the multiplication by 4\sqrt{b}.
x=\frac{b^{-\frac{1}{2}}\left(4b+9-4\sqrt{3}\right)}{4}
Divide 9-4\sqrt{3}+4b by 4\sqrt{b}.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}-\left(2\sqrt{b}-x\right)^{2}=16-x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+3-\left(2\sqrt{b}-x\right)^{2}=16-x^{2}
The square of \sqrt{3} is 3.
7+4\sqrt{3}-\left(2\sqrt{b}-x\right)^{2}=16-x^{2}
Add 4 and 3 to get 7.
7+4\sqrt{3}-\left(4\left(\sqrt{b}\right)^{2}-4\sqrt{b}x+x^{2}\right)=16-x^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2\sqrt{b}-x\right)^{2}.
7+4\sqrt{3}-\left(4b-4\sqrt{b}x+x^{2}\right)=16-x^{2}
Calculate \sqrt{b} to the power of 2 and get b.
7+4\sqrt{3}-4b+4\sqrt{b}x-x^{2}=16-x^{2}
To find the opposite of 4b-4\sqrt{b}x+x^{2}, find the opposite of each term.
7+4\sqrt{3}-4b+4\sqrt{b}x-x^{2}+x^{2}=16
Add x^{2} to both sides.
7+4\sqrt{3}-4b+4\sqrt{b}x=16
Combine -x^{2} and x^{2} to get 0.
4\sqrt{3}-4b+4\sqrt{b}x=16-7
Subtract 7 from both sides.
4\sqrt{3}-4b+4\sqrt{b}x=9
Subtract 7 from 16 to get 9.
-4b+4\sqrt{b}x=9-4\sqrt{3}
Subtract 4\sqrt{3} from both sides.
4\sqrt{b}x=9-4\sqrt{3}+4b
Add 4b to both sides.
4\sqrt{b}x=4b+9-4\sqrt{3}
The equation is in standard form.
\frac{4\sqrt{b}x}{4\sqrt{b}}=\frac{4b+9-4\sqrt{3}}{4\sqrt{b}}
Divide both sides by 4\sqrt{b}.
x=\frac{4b+9-4\sqrt{3}}{4\sqrt{b}}
Dividing by 4\sqrt{b} undoes the multiplication by 4\sqrt{b}.