Solve for x (complex solution)
x=-\frac{b^{-\frac{1}{2}}\left(-4b+4\sqrt{3}-9\right)}{4}
b\neq 0
Solve for x
x=-\frac{-4b+4\sqrt{3}-9}{4\sqrt{b}}
b>0
Solve for b (complex solution)
\left\{\begin{matrix}b=\frac{\left(\sqrt{x^{2}+4\sqrt{3}-9}+x\right)^{2}}{4}\text{, }&arg(\frac{\sqrt{x^{2}+4\sqrt{3}-9}+x}{2})<\pi \\b=\frac{\left(-\sqrt{x^{2}+4\sqrt{3}-9}+x\right)^{2}}{4}\text{, }&arg(\frac{-\sqrt{x^{2}+4\sqrt{3}-9}+x}{2})<\pi \end{matrix}\right.
Solve for b
b=\frac{\left(\sqrt{x^{2}+4\sqrt{3}-9}+x\right)^{2}}{4}
b=\frac{\left(-\sqrt{x^{2}+4\sqrt{3}-9}+x\right)^{2}}{4}\text{, }x\geq \sqrt{9-4\sqrt{3}}
Graph
Share
Copied to clipboard
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}-\left(2\sqrt{b}-x\right)^{2}=16-x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+3-\left(2\sqrt{b}-x\right)^{2}=16-x^{2}
The square of \sqrt{3} is 3.
7+4\sqrt{3}-\left(2\sqrt{b}-x\right)^{2}=16-x^{2}
Add 4 and 3 to get 7.
7+4\sqrt{3}-\left(4\left(\sqrt{b}\right)^{2}-4\sqrt{b}x+x^{2}\right)=16-x^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2\sqrt{b}-x\right)^{2}.
7+4\sqrt{3}-\left(4b-4\sqrt{b}x+x^{2}\right)=16-x^{2}
Calculate \sqrt{b} to the power of 2 and get b.
7+4\sqrt{3}-4b+4\sqrt{b}x-x^{2}=16-x^{2}
To find the opposite of 4b-4\sqrt{b}x+x^{2}, find the opposite of each term.
7+4\sqrt{3}-4b+4\sqrt{b}x-x^{2}+x^{2}=16
Add x^{2} to both sides.
7+4\sqrt{3}-4b+4\sqrt{b}x=16
Combine -x^{2} and x^{2} to get 0.
4\sqrt{3}-4b+4\sqrt{b}x=16-7
Subtract 7 from both sides.
4\sqrt{3}-4b+4\sqrt{b}x=9
Subtract 7 from 16 to get 9.
-4b+4\sqrt{b}x=9-4\sqrt{3}
Subtract 4\sqrt{3} from both sides.
4\sqrt{b}x=9-4\sqrt{3}+4b
Add 4b to both sides.
4\sqrt{b}x=4b+9-4\sqrt{3}
The equation is in standard form.
\frac{4\sqrt{b}x}{4\sqrt{b}}=\frac{4b+9-4\sqrt{3}}{4\sqrt{b}}
Divide both sides by 4\sqrt{b}.
x=\frac{4b+9-4\sqrt{3}}{4\sqrt{b}}
Dividing by 4\sqrt{b} undoes the multiplication by 4\sqrt{b}.
x=\frac{b^{-\frac{1}{2}}\left(4b+9-4\sqrt{3}\right)}{4}
Divide 9-4\sqrt{3}+4b by 4\sqrt{b}.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}-\left(2\sqrt{b}-x\right)^{2}=16-x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+3-\left(2\sqrt{b}-x\right)^{2}=16-x^{2}
The square of \sqrt{3} is 3.
7+4\sqrt{3}-\left(2\sqrt{b}-x\right)^{2}=16-x^{2}
Add 4 and 3 to get 7.
7+4\sqrt{3}-\left(4\left(\sqrt{b}\right)^{2}-4\sqrt{b}x+x^{2}\right)=16-x^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2\sqrt{b}-x\right)^{2}.
7+4\sqrt{3}-\left(4b-4\sqrt{b}x+x^{2}\right)=16-x^{2}
Calculate \sqrt{b} to the power of 2 and get b.
7+4\sqrt{3}-4b+4\sqrt{b}x-x^{2}=16-x^{2}
To find the opposite of 4b-4\sqrt{b}x+x^{2}, find the opposite of each term.
7+4\sqrt{3}-4b+4\sqrt{b}x-x^{2}+x^{2}=16
Add x^{2} to both sides.
7+4\sqrt{3}-4b+4\sqrt{b}x=16
Combine -x^{2} and x^{2} to get 0.
4\sqrt{3}-4b+4\sqrt{b}x=16-7
Subtract 7 from both sides.
4\sqrt{3}-4b+4\sqrt{b}x=9
Subtract 7 from 16 to get 9.
-4b+4\sqrt{b}x=9-4\sqrt{3}
Subtract 4\sqrt{3} from both sides.
4\sqrt{b}x=9-4\sqrt{3}+4b
Add 4b to both sides.
4\sqrt{b}x=4b+9-4\sqrt{3}
The equation is in standard form.
\frac{4\sqrt{b}x}{4\sqrt{b}}=\frac{4b+9-4\sqrt{3}}{4\sqrt{b}}
Divide both sides by 4\sqrt{b}.
x=\frac{4b+9-4\sqrt{3}}{4\sqrt{b}}
Dividing by 4\sqrt{b} undoes the multiplication by 4\sqrt{b}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}