Evaluate
\frac{3\sqrt{2}}{2}\approx 2.121320344
Share
Copied to clipboard
\left(2+\sqrt{2}\right)\times \frac{2+\sqrt{2}}{\left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right)}-\frac{1}{2+\sqrt{2}}-1\left(2+\sqrt{2}\right)
Rationalize the denominator of \frac{1}{2-\sqrt{2}} by multiplying numerator and denominator by 2+\sqrt{2}.
\left(2+\sqrt{2}\right)\times \frac{2+\sqrt{2}}{2^{2}-\left(\sqrt{2}\right)^{2}}-\frac{1}{2+\sqrt{2}}-1\left(2+\sqrt{2}\right)
Consider \left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(2+\sqrt{2}\right)\times \frac{2+\sqrt{2}}{4-2}-\frac{1}{2+\sqrt{2}}-1\left(2+\sqrt{2}\right)
Square 2. Square \sqrt{2}.
\left(2+\sqrt{2}\right)\times \frac{2+\sqrt{2}}{2}-\frac{1}{2+\sqrt{2}}-1\left(2+\sqrt{2}\right)
Subtract 2 from 4 to get 2.
\frac{\left(2+\sqrt{2}\right)\left(2+\sqrt{2}\right)}{2}-\frac{1}{2+\sqrt{2}}-1\left(2+\sqrt{2}\right)
Express \left(2+\sqrt{2}\right)\times \frac{2+\sqrt{2}}{2} as a single fraction.
\frac{\left(2+\sqrt{2}\right)\left(2+\sqrt{2}\right)}{2}-\frac{2-\sqrt{2}}{\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}-1\left(2+\sqrt{2}\right)
Rationalize the denominator of \frac{1}{2+\sqrt{2}} by multiplying numerator and denominator by 2-\sqrt{2}.
\frac{\left(2+\sqrt{2}\right)\left(2+\sqrt{2}\right)}{2}-\frac{2-\sqrt{2}}{2^{2}-\left(\sqrt{2}\right)^{2}}-1\left(2+\sqrt{2}\right)
Consider \left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{2}\right)\left(2+\sqrt{2}\right)}{2}-\frac{2-\sqrt{2}}{4-2}-1\left(2+\sqrt{2}\right)
Square 2. Square \sqrt{2}.
\frac{\left(2+\sqrt{2}\right)\left(2+\sqrt{2}\right)}{2}-\frac{2-\sqrt{2}}{2}-1\left(2+\sqrt{2}\right)
Subtract 2 from 4 to get 2.
\frac{\left(2+\sqrt{2}\right)\left(2+\sqrt{2}\right)-\left(2-\sqrt{2}\right)}{2}-1\left(2+\sqrt{2}\right)
Since \frac{\left(2+\sqrt{2}\right)\left(2+\sqrt{2}\right)}{2} and \frac{2-\sqrt{2}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{4+2\sqrt{2}+2\sqrt{2}+2-2+\sqrt{2}}{2}-1\left(2+\sqrt{2}\right)
Do the multiplications in \left(2+\sqrt{2}\right)\left(2+\sqrt{2}\right)-\left(2-\sqrt{2}\right).
\frac{4+5\sqrt{2}}{2}-1\left(2+\sqrt{2}\right)
Do the calculations in 4+2\sqrt{2}+2\sqrt{2}+2-2+\sqrt{2}.
\frac{4+5\sqrt{2}}{2}-\frac{2\left(2+\sqrt{2}\right)}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2+\sqrt{2} times \frac{2}{2}.
\frac{4+5\sqrt{2}-2\left(2+\sqrt{2}\right)}{2}
Since \frac{4+5\sqrt{2}}{2} and \frac{2\left(2+\sqrt{2}\right)}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{4+5\sqrt{2}-4-2\sqrt{2}}{2}
Do the multiplications in 4+5\sqrt{2}-2\left(2+\sqrt{2}\right).
\frac{3\sqrt{2}}{2}
Do the calculations in 4+5\sqrt{2}-4-2\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}