( 2 + \frac { 54000 } { 60000 } + \frac { 60000 } { 64000 } ) 0,015
Evaluate
0,0575625
Factor
\frac{3 \cdot 307}{2 ^ {7} \cdot 5 ^ {3}} = 0.0575625
Share
Copied to clipboard
\left(2+\frac{9}{10}+\frac{60000}{64000}\right)\times 0,015
Reduce the fraction \frac{54000}{60000} to lowest terms by extracting and canceling out 6000.
\left(\frac{20}{10}+\frac{9}{10}+\frac{60000}{64000}\right)\times 0,015
Convert 2 to fraction \frac{20}{10}.
\left(\frac{20+9}{10}+\frac{60000}{64000}\right)\times 0,015
Since \frac{20}{10} and \frac{9}{10} have the same denominator, add them by adding their numerators.
\left(\frac{29}{10}+\frac{60000}{64000}\right)\times 0,015
Add 20 and 9 to get 29.
\left(\frac{29}{10}+\frac{15}{16}\right)\times 0,015
Reduce the fraction \frac{60000}{64000} to lowest terms by extracting and canceling out 4000.
\left(\frac{232}{80}+\frac{75}{80}\right)\times 0,015
Least common multiple of 10 and 16 is 80. Convert \frac{29}{10} and \frac{15}{16} to fractions with denominator 80.
\frac{232+75}{80}\times 0,015
Since \frac{232}{80} and \frac{75}{80} have the same denominator, add them by adding their numerators.
\frac{307}{80}\times 0,015
Add 232 and 75 to get 307.
\frac{307}{80}\times \frac{3}{200}
Convert decimal number 0,015 to fraction \frac{15}{1000}. Reduce the fraction \frac{15}{1000} to lowest terms by extracting and canceling out 5.
\frac{307\times 3}{80\times 200}
Multiply \frac{307}{80} times \frac{3}{200} by multiplying numerator times numerator and denominator times denominator.
\frac{921}{16000}
Do the multiplications in the fraction \frac{307\times 3}{80\times 200}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}