Verify
true
Share
Copied to clipboard
\frac{4}{2}+\frac{3}{2}+4=2+\frac{3}{2}+4
Convert 2 to fraction \frac{4}{2}.
\frac{4+3}{2}+4=2+\frac{3}{2}+4
Since \frac{4}{2} and \frac{3}{2} have the same denominator, add them by adding their numerators.
\frac{7}{2}+4=2+\frac{3}{2}+4
Add 4 and 3 to get 7.
\frac{7}{2}+\frac{8}{2}=2+\frac{3}{2}+4
Convert 4 to fraction \frac{8}{2}.
\frac{7+8}{2}=2+\frac{3}{2}+4
Since \frac{7}{2} and \frac{8}{2} have the same denominator, add them by adding their numerators.
\frac{15}{2}=2+\frac{3}{2}+4
Add 7 and 8 to get 15.
\frac{15}{2}=\frac{4}{2}+\frac{3}{2}+4
Convert 2 to fraction \frac{4}{2}.
\frac{15}{2}=\frac{4+3}{2}+4
Since \frac{4}{2} and \frac{3}{2} have the same denominator, add them by adding their numerators.
\frac{15}{2}=\frac{7}{2}+4
Add 4 and 3 to get 7.
\frac{15}{2}=\frac{7}{2}+\frac{8}{2}
Convert 4 to fraction \frac{8}{2}.
\frac{15}{2}=\frac{7+8}{2}
Since \frac{7}{2} and \frac{8}{2} have the same denominator, add them by adding their numerators.
\frac{15}{2}=\frac{15}{2}
Add 7 and 8 to get 15.
\text{true}
Compare \frac{15}{2} and \frac{15}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}