Evaluate
d = \frac{9}{7} = 1\frac{2}{7} = 1.2857142857142858
Expand
d = \frac{9}{7} = 1\frac{2}{7} = 1.2857142857142858
Share
Copied to clipboard
\frac{\frac{8}{4}+\frac{1}{4}}{2-\frac{1}{4}}+1d
Convert 2 to fraction \frac{8}{4}.
\frac{\frac{8+1}{4}}{2-\frac{1}{4}}+1d
Since \frac{8}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{\frac{9}{4}}{2-\frac{1}{4}}+1d
Add 8 and 1 to get 9.
\frac{\frac{9}{4}}{\frac{8}{4}-\frac{1}{4}}+1d
Convert 2 to fraction \frac{8}{4}.
\frac{\frac{9}{4}}{\frac{8-1}{4}}+1d
Since \frac{8}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{9}{4}}{\frac{7}{4}}+1d
Subtract 1 from 8 to get 7.
\frac{9}{4}\times \frac{4}{7}+1d
Divide \frac{9}{4} by \frac{7}{4} by multiplying \frac{9}{4} by the reciprocal of \frac{7}{4}.
\frac{9\times 4}{4\times 7}+1d
Multiply \frac{9}{4} times \frac{4}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{7}+1d
Cancel out 4 in both numerator and denominator.
\frac{9}{7}+d
For any term t, t\times 1=t and 1t=t.
\frac{\frac{8}{4}+\frac{1}{4}}{2-\frac{1}{4}}+1d
Convert 2 to fraction \frac{8}{4}.
\frac{\frac{8+1}{4}}{2-\frac{1}{4}}+1d
Since \frac{8}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{\frac{9}{4}}{2-\frac{1}{4}}+1d
Add 8 and 1 to get 9.
\frac{\frac{9}{4}}{\frac{8}{4}-\frac{1}{4}}+1d
Convert 2 to fraction \frac{8}{4}.
\frac{\frac{9}{4}}{\frac{8-1}{4}}+1d
Since \frac{8}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{9}{4}}{\frac{7}{4}}+1d
Subtract 1 from 8 to get 7.
\frac{9}{4}\times \frac{4}{7}+1d
Divide \frac{9}{4} by \frac{7}{4} by multiplying \frac{9}{4} by the reciprocal of \frac{7}{4}.
\frac{9\times 4}{4\times 7}+1d
Multiply \frac{9}{4} times \frac{4}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{7}+1d
Cancel out 4 in both numerator and denominator.
\frac{9}{7}+d
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}